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Introduction.

Tue following paper treats of the effects of frictional tides in a planet on the orbit of
its satellite. It is the sequel to three previous papers on a similar subject.”

The investigation has proved to be one of unexpected complexity, and this must be
my apology for the great length of the present paper. This was in part due to the
fact that it was found impossible to consider adequately the changes in the orbit of the
satellite, without a reconsideration of the parallel changes in the planet. Thus some
of the ground covered in the previous paper on ‘ Precession” had to be retraversed ;
but as the methods here employed are quite different from those used before, this
repetition has not been without some advantage.

* ¢« On the Bodily Tides of Viscous and Semi-elastic Spheroids, and on the Ocean Tides upon a Yielding
Nucleus,” Phil. Trans., Part I., 1879.

«“QOn the Precession of a Viscous Spheroid, and on the remote History of the Karth,” Phil. Trans.,
Part II1., 1879.

“On Problems connected with the Tides of a Viscous Spheroid,” Phil. Trans., Part II., 1879.

These papers are hereafter referred to as ¢ Tides,” Precession,” and “ Problems ” respectively.

There is also a fourth paper, treating the subject from a different point of view, viz.: ‘“The Determi-
nation of the Secular Effects of Tidal Friction by a Graphical Method,” Proc. Roy. Soc., No. 197, 1879.
And lastly a fifth paper of more recent date, “ On the Analytical Expressions which give the History of a
Fluid Planet of Small Viscosity, attended by a Single Satellite,” Proc. Roy. Soc., No. 202, 1880.
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It will probably conduce to the intelligibility of what follows, if an explanatory out-
line of the contents of the paper is placed before the reader. Such an outline must of
course contain references to future procedure, and cannot therefore be made entirely
intelligible, yet it appears to me that some sort of preliminary notions of the nature
of the subject will be advantageous, because it is sometimes difficult for a reader to
retain the thread of the argument amidst the mass of details of a long investigation,
which is leading him in some unknown direction.

Part VIIIL. contains a general review of the subject in its application to the evolu-
tion of the planets of the solar system. This is probably the only part of the paper
which will have any interest to the general reader.

The mathematical reader, who merely wishes to obtain a general idea of the results,
is recommended to glance through the present introduction, and then to turn to
Part VIIL., which contains a summary, with references to such parts of the paper as it
was not desirable to reproduce. This summary does not contain any analysis, and
deals more especially with the physical aspects of the problem, and with the question
of the applicability of the investigation to the history of the earth and moon, but of
course it must not be understood to contain references to every point which seems to
be worthy of notice. I think also that a study of Part VII. will facilitate the compre-
hension of the analytical parts of the paper.

Part 1. contains an explanation of the peculiarities of the method of the disturbing
function as applied to the tidal problem. At the beginning there is a summary of the
meaning to be attached to the principal symbols employed. The problem is divided into
several heads, and the disturbing function is partially developed in such a way that it
may be applicable either to finding the perturbations of the satellite, or of the planet
itself.

In Part II. the satellite is supposed to move in a circular orbit, inclined to the fixed
plane of reference. It here appears that the problem may be advantageously sub-
divided into the following cases: 1st, where the permanent oblateness of the planet is
small, and where the satellite is directly perturbed by the action of a second large and
distant satellite such as the sun; 2nd, where the planet and satellite are the only two
bodies in existence; 3rd, where the permanent oblateness is considerable, and the
action of the second satellite is not so important as in the first case. The first and
second of these cases afford the subject for the rest of this part, and the laws are found
which govern the secular changes in the inclination and mean distance of the satellite,
and the obliquity and diurnal rotation of the planet.

Part TII. is devoted to the third of the above cases, It was found necessary first
to investigate the motion of asatellite revolving about a rigid oblate spheroidal planet,
and perturbed by a second satellite. Here I had to introduce the conception of a pair
of planes, to which the motions of the satellite and planet may be referred. The
problem of the third case is then shown to resolve itself into a tracing of the secular

changes in the positions of these two “proper” planes, under the influence of tidal
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friction. After a long analytical investigation differential equations are found for the
rate of these changes.

Part IV. contains the numerical integration of the differential equations of Parts II.
and IIL, in application to the case of the earth, moon, and sun, the earth being
supposed to be viscous.

Part V. contains the investigation of the secular changes of the eccentricity of
the orbit of a satellite, together with the corresponding chaunges in the planet’s
mode of motion.

Part VI. contains a numerical integration of the equations of Part V. in the case of
the earth and moon. The objects of Parts VII. and VIII. have been already explained.

In the abstract of this paper in the Proceedings of the Royal Society,” certain
general considerations are adduced which throw light on the nature of the results here
found. This general reasoning is not reproduced here, because it is incapable of leading
us to definite results, and it was only used there as a substitute for analysis.

I.

THE THEORY OF THE DISTURBING FUNCTION.

§ 1. Preliminary considerations.

In the theory of disturbed elliptic motion the six elements of the orbit may be
divided into two groups of three.

One set of three gives a description of the nature of the orbit which is being
described at any epoch, and the second set is required to determine the position of the
body at any instant of time. In a speculative inquiry like the present one, where we
are only concerned with very small inequalities which would have no interest unless
their effects could be cumulative from age to age, so that the orbit might become
materially changed, it is obvious that the secular changes in the second set of elements
need not be considered.

The three elements whose variations are not here found are the longitudes of the
perigee, the node, and the epoch; but the subsequent investigation will afford the
materials for finding their variations if it be desirable to do so.

The first set of elements whose secular changes are to be traced are, according to
the ordinary system, the mean distance, the eccentricity, and the inclination of the
orbit. 'We shall, however, substitute for the two former elements, viz.: mean distance
and eccentricity, two other functions which define the orbit equally well ; the first of
these is a quantity proportional to the square root of the mean distance, and the
second is the ellipticity of the orbit. The inclination will be retained as the third
element.

The prineipal problem to be solved is as follows:—

# No. 200, 1879.
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A planet is attended by one or more satellites which raise frictional tides (either
bodily or oceanic) in their planet; it is required to find the secular changes in the
orbits of the satellites dué to tidal reaction.

This problem is however intimately related to a consideration of the parallel changes
in the inclination of the planet’s axis to a fixed plane, and in its diurnal rotation.

It will therefore be necessary to traverse again, to some extent, the ground covered
by my previous paper ““On the Precession of a Viscous Spheroid.”

In the following investigation the tides are supposed to be a bodily deformation of
the planet, but a slight modification of the analytical results would make the whole
applicable to the case of oceanic tides on a rigid nucleus.* The analysis will be such
that the results may be applied to any theory of tides, but particular application will
be made to the case where the planet is a homogeneous viscous spheroid, and the
present paper is thus a continuation of my previous ones on the tides and rotation of
such a spheroid.

The general problem above stated may be conveniently divided into two :—

First, to find the secular changes in mean distance and inclination. of the orbit of a
satellite moving in a circular orbit about its planet.

Second, to find the secular change in mean distance, and eccentricity of the orbit of
a satellite moving in an elliptic orbit, but always remaining in a fixed plane.

As stated in the introductory remarks, it will also be necessary to investigate the
secular changes in the diurnal rotation and in the obliquity of the planet’s equator to
the plane of reference.

The tidally distorted planet will be spoken of as the earth, and the satellites as the
moon and sun.

This not only affords a useful vocabulary, but permits an easy transition from ques-
tions of abstract dynamics to speculations concerning the remote history of the earth
and moon.

§ 2. Notation—Equation of variation of elements.

The present section, and the two which follow it, are of general applicability to the
whole investigation. .

For reasons which will appear later it will be necessary to conceive the earth to
have two satellites, which may conveniently be called Diana and the moon. The
following are the definitions of the symbols employed.

The time is ¢, and the suffix 0 to any symbol indicates the value of the correspond-
ing quantity initially, when t=0. The attraction of unit masses at unit distance is .

For the earth, let—

M= mass in ordinary units; ¢= mean radius; w= density, or mass per unit
volume, the earth being treated as homogeneous; g= mean gravity; §=32g/a;

* Or, as to Part ITI.,, on a nucleus which is sufficiently plastic to adjust itself to a form of equilibrium.
MDCCCLXXX, 4 z
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O, A= the greatest and least moments of inertia of the earth; if we neglect the
ellipticity they will be equal to $Ma*; n= angular velocity of diurnal rotation;
= longitude of autummal equinox measured along the ecliptic from a fixed point in
the ecliptic—the ecliptic being here a name for a plane fixed in space; 1= obliquity
of ecliptic; x the angle between a point fixed on the equator and the autumnal
equinox ; p the radius vector of any point measured from the earth’s centre.

For Diana, let—

¢= mean distance ; é=(c/c,)}; 2= mean motion; e= eccentricity of orbit; »=
ellipticity of orbit; == longitude of perigee ; j= inclination of orbit to ecliptic; N=
longitude of node; e= longitude of epoch; m= mass; v= ratio of earth’s mass to
Diana’s or M/m ; l= true longitude measured from the node; 6= true longitude
measured from the autummal equinox; r=3um/c®, so that r=30%/2(14), also
7=1,/£%; r the radius vector measured from earth’s centre.

Also A=0/n; 0t the ratio of the earth’s moment of momentum of rotation to that of
the orbital motion of Diana (or the moon) and the earth round their common centre of
inertia. ;

For the moon let all the same symbols apply when accents are added to them.

Where occasion arises to refer merely to the elements of a satellite in general, the
unaccented symbols will be employed.

Let R be the disturbing function as ordinarily defined in works on physical
astronomy.

Other symbols will be defined as the necessity for them arises.

Then the following are the well-known equations for the variation of the mean
distance, eccentricity, inclination, and longitude of the node.

@g_ 2nNc¢®  dR

G e ()
de fle [1—€dR ,/1—¢ @_I_@ 9
At~ p(M+m)| e de e de '"dw /)|° 7 7 7 ( )
4 e 1 1 dR dR | dR
T dt T p(M+m) ¢1—e2[si—n}dN+t 2 ( +dw>:} e )
AN e 1 dR @)
sy o g e s g d; e e e e e e e e e

The last of these equations will only be required in Part IIT.

Now let R=WC(M+m)/Mm ; then if we substitute this value for R in each of the
equations (1-4), it is clear that the right hand side of each will involve a factor
0¢ClpMm.
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Then let,
T L S ()

1+le n}.  Thus if we put

S:%[(%)z(l—hv)}%. RN

k=sof . . . . . . . . . . (")

C 2v
(For a homogeneous earth =5y and noco—[(gaz)

st is a time, being about 8" 4Lmi» for the homogeneous earth. % is also a time, being

about 57 minutes, with the present orbital angular velocity of the moon, and the earth
being homogeneous).

Then since 2=102£73, c=c,&? therefore

C k
ce—0e=2 . . . . . . . . . . . (8
i =g )
Again, since (c/cy)*=§, therefore
lde  2dE
caFd ©
and since n=1—,/1—e¢?, therefore
dn e de
=Ji=ea oo (10)

Then substituting for R in terms of W in the four equations (1-4), and using the
transformations (8-10), we get,

at
Tl
I k(W W

=) (12)

and if the orbit be circular, so that e=0, dW/dw=0,

dj_k{ 1 dW awW

_d—t_§<smy dN+ tan 37 de ) (13)
. AN kdW
8111 7 —&?_EE . [ Ce . [ e (14)

These are the equations of variation of elements which will be used below. The
last two (13) and (14) will only be required in the case where the orbit is circular.
4z 2
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The function W only differs from the ordinary disturbing function by a constant
factor, and so W will be referred to as the disturbing function.

I will now explain why it has been convenient to depart from ordinary usage, and
will show how the same disturbing function W may be used for giving the perturba-
tions of the rotation of the planet.

In the present problem all the perturbations, both of satellites and planet, arise
from tides raised in the planet.

The only case treated will be where the tidal wave is expressible as a surface
spherical harmonic of the second order.

Suppose then that p=a-+o is the equation to the wave surface, superposed on the
sphere of mean radius a.

Then the potential V of the wave o, at an external point p, must be given by

a

3 A
V=%7rp.’tt'a<;>a' e e e e (15)

Here wis the density of the matter forming the wave ; in our case of a homogeneous
earth, distorted by bodily tides, w is the mean density of the earth. (If we con-
template oceanic tides, the subsequent results for the disturbing function must be
reduced by the factor %, this being the ratio of the density of water to the mean
density of the earth.) '

Now suppose the external point p to be at a satellite whose mass, radius vector, and
mean distance are 12, 7, ¢.  Then if we put 7=35um/c?, and observe that C={wwa’, we
have

C /e\3o
V:—T<;>-0L. e ¢ 1)
Where o is the height of tide, where the wave surface is pierced by the satellite’s
radius vector.
But the ordinary disturbing function R for this satellite is this potential V
augmented by the factor (M=m)/M, because the planet must be reduced to rest.
Hence our disturbing function

. ACE
W_T<;>;c. )
where o is the height of tide at the place where the wave surface is pierced by ».
- Now let us turn to the case of the planet as perturbed by the attraction of the
same satellite on the same wave surface. The whole force function of the action of
the satellite on the planet is, by (16), clearly equal to
(M C [c\3c)
o))

e
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The latter term of this expression will give the perturbing couples; it is equal to
Cw.

In the accompanying fig. 1 let X Y Z be axes fixed in space, and (adopting the
phraseology for the case of the earth) let X Y be the ecliptic; let A B C be axes fixed
in the planet ; let x be the angle AN or BC D; ¢ the obliquity of the ecliptic; ¢ the
longitude of the autumnal equinox from the fixed point X in the ecliptic.

Fig. 1.

Now suppose W to be expressed in terms of x, ¢, y.
Then the perturbing couples, which act on the planet, are

C o about N, tending to increase .

Cg% about Z, tending to increase .

7

LAl
dy

about C, tending to increase y.

Now let 3L, JB, A be the perturbing couples acting about A, B, C respectively.

Then must

dW . .. .
C . —3 sin 2 sin x— JB sin ¢ cos y+ J cos ¢

C d—;}: — 3L cos x+ P sin x

adW
Whence
L (AW AW L AW
.de d«l»>81nx dic.x

= -—|cC
C  sine

m_ 1 AW __dW aw
Z’—ZX dw)msx—} g7 s x
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But if o, w,, w; be the component angular velocities of the planet about A, B, C
respectively, and if we may neglect (C—A)/A compared with unity, the equations of
motion may be written

doy W do, M do, P
dt —C>at C’dt™ C

as was shown in section (6) of my previous paper on * Precession.”
Then since x=nt, we have by integration,

1 AW _ AW LaW ..

= s \O® Ty ) X T @ X
_ AW AW\ LW

D= Lsing de A SIOX™0 4 0% X

Then substituting these values in the geometrical equations,

dv .
— == — ) COS X, SN Y
dt
. . .
s1n 2 —l_f_:: — Sin X Wy (¢{0)3) X
d

We have finally,

OV WY
nsini g, = costog =
L A
nsinG = Do ... (18)
dn__dW
dt™ dy )

These are the equations which will be used for determining the perturbations of the
planet’s rotation.

We now see that the same disturbing function W will serve for finding both sets of
perturbations.

It is clear that it is not necessary in the above investigation that o should actually
be a tide wave ; it may just as well refer to the permanent oblateness of the planet.
Thus the ordinary precession and nutations may be determined from these formulas.

§8. To find spherical harmonic functions of Diana’s coordinates with reference to axes
Sixed in the earth.

Let A, B, C be rectangular axes fixed in the carth, C being the pole and AB the
equator.
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Let X, Y, Z be a second set of rectangular axes, XY being the plane of Diana’s
orbit.
Let M be the projection of Diana in her orbit.
Let ¢, =ZC, the obliquity of the equator to the plane of Diana’s orbit.
x,=AX=BCY.
[ =MX, Diana’s longitude from the node X.
Let M,= cos MA
M,= cos MB » Diana’s direction-cosines referred to A, B, C.
M;= cos MC
Then

~

M,= cosl cosy,+ sinl sin x, cos s,
M,=—cos [ sin x,+ sin [, cos x, cos 7, (19)

M;= sin/ sinv, J

We may observe that M, is derivable from M, by writing x,+4# in place of ..
These expressions refer to the plane of Diana’s orbit, but we must now refer to the
ecliptic.

Fig. 3.

In fig. 3,let A be the autumnal equinox, B the ascending node of the orbit, C the
intersection of the orbit with the equator, being the X of fig. 2, and let D be a point
fixed in the equator, being the A of fig. 2.

Then if we refer to the sides and angles of the spherical triangle A B C by the letters
a, b, ¢, A, B, C as is usual in works on spherical trigonometry, we have

A =3, the obliquity of the ecliptic.
B=y, the inclination of the orbit.
77— C=1,=ZC of fig. 2.
¢ =N, the longitude of the node measured from A, for at present we may
suppose =0, without loss of generality.
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Then let x=DA, and we have
x—b=DC=y,

Again, if M be Diana in her orbit, MB=/, and since MC=/, therefore

l+a=l,
Whence
cos x,= cos x cos b+ sin x sin b
sin x,= sin x cos b— cos x sin b
cos [, = cos [ cos a— sin [ sin a
sin [,= sin [ cos a+ cos ! sin a

Substituting these values in the first of (19) we have

M, =cos y cos  (cos a cos b—sin a sin b cos 7)+sin x cos ! (cos a sin b+sin a cos b cos 7))
—cos x sin I (sin & cos b4-cos a sin b cos ¢,) —sin x sin I (sin a sin b—cos a cos b cos 7,)

Now cos ¢,= —cos C, and

cos a cos b~4sin a sin b cos C=cos c=cos N

cos a sin b—sin a cos b cos C=sin a [cot a sin b—cos b cos C]=sin a cot A sin C
=costsin NV

sin a cos b—cos a sin b cos C=sin b [cot b sin a—cos a cos C]=sin b cot Bsin C
=cosj sin N

sin a sin b cos a cos b cos C=sin a sin b4-cos ¢ cos C—sin a sin b cos® C
—sin a sin b sin? C4-cos ¢(—cos A cos B+4-sin A sin B cos c)
—sin A sin B sin? c4sin A sin B cos? c—cos A cos B cos ¢
=sin ¢ sin j—cos i cos j cos N

Then substituting in the expression for M,

M, =cos x cos [ cos N+sin x cos I sin NV cos i—cos x sin [ sin N cos

—sin x sin ! (sin ¢ sin j —cos 7 cos j cos V)

TN VIS U SO I
Let P=cos {7, Q=sin 41, p=cos gJ, ¢=sIn 35

Then

M, = (P*+ Q%) ( p*+¢?) cos x cos I cos N+ (P*— @) (p*+¢°) sin x cos [ sin N
— (PP Q¥ (p*—¢?) cos x sin I sin N + (P*—@)(p*—¢°) sin x sin [ cos N
—4PQ pq sin x sin {
= P%? cos (x —l— N)+ P2¢? cos (x+1—N)+@** cos (x+1+N)
+Q%¢? cos (x—1+N)+2PQ pq [cos (x+1)—cos (x—=1)]. (20)
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Since M, is derivable from M, by writing x,+ 47 for x,, therefore it is also derivable
by writing x+4m for . Hence —M, is the same as M, save that sines replace
cosines

Again My=sin [, sin7,=sin [ cos a sin 1,+-cos ! sin a sin 7,

But sin a sin ¢,=sin 1 sin N=2P@ sin N'

And cos a sin 2 =sin ¢ cot a sin ¢=sin 7 (cot A sin B+4cos ¢ cos B)

=cos % sin j+sin ¢ cos J cos N
=2pq(P*—~ @) +2PQ(p*—¢°) cos N
Therefore

M,=2PQ[ p?sin (I4+N)—¢sin (I—N)]+2pg(P2—@Q*)sinl . . . (21)

For the sake of future developments it will be more convenient to replace the sines
and cosines in the expressions for the M’s by exponentials, and for brevity the /=1
will be omitted in the indices.

Then

M, =" [ Pp— Qqe” P4-ex* ¥ [Qp+ Pge~" P+ the same with the signs of the

indices of the exponentials changed,
—2M,,/—1= the same with sign of second line changed,

M/ =I=e*" [Pp—Qqe™"] [Qp+Pge™] — same with signs of the indices of
the exponentials changed.

Now let
w=Pp—Qqe", k=Qp+Pge" } (22)

w=Pp—Qqe™, k=Qp+Pge™"

From these definitions it appears that = and « are two imaginary functions, which
oscillate between the real values cos 3(:+47) and cos §(¢—y), and sin L (¢-j) and sin (1 —7)
as the node of the orbit moves round.

Also let 0=14N, the true longitude of Diana measured from the autumnal equinox.
Strictly speaking, when longitudes are measured from a fixed point in the ecliptic
0=1[+N—y, but in the present investigation nothing is lost by regarding v as zero ;
in § (12), and in Part TIT., we shall have to introduce 4.

Then

2M,= w4 Pt e X 20
oM,/ —1= —wze""e—ize’“'o—l— E2e—x+9+K2e—x-—9 e (28)

Ms \/ 1= 1_6‘569 — e

The object of the present investigation is to find the following spherical harmonic
functions of the second degree of M;, M, M, viz. :
MDCCCLXXX. 5 A
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Then by adding the squares of the first and second of (23), we have

2MpP—MR)= w0 42adle™ + kledct?

Fle 0 L2t At (24)

From (20) we know that M; has the form A cos (y+B), and —M, the form
SAsin (y+B); therefore (M,+M,)27% has the form A cos (x+4w+B), and
(M, —M,)2"t the form SA sin (y+47+B). Hence if we write x—ix for x in M;>*—M,?,
we obtain —2M M,. Therefore from (24) we obtain

—AMM,,/ 1= &' 4 2m%l  xctedc+d

e dt e L (25)

The ,/—1 appears on the left hand side because e: =—(—1)7%, ei=(—1)7%
It is also easy to show that,

MM, = —w k™™  “w(ww—kr)et +mrdext? .

—fSEe_(X_%)—}-EK(w_w—-KK)G_’X+Z;7K36_<X+29) L. . . (26)

oM M,/ —1=—=kex™® -+ @K (ww—ki)eX + 'a_rlf_?’e" +20

-I—Eske'"(x“%)—gk(z_n_w—KK)e"""——-wkge”(X+29) o (27)

%;*—-Mf:%-—QGEKE—I-E%%%—I-GSQKQ@”%'. N 13}

It may be here noted that ww+rk=1, 80 that

3—2mmrr =1 (e’ — dwwrx+ 1K)

These five formulas (24) to (28) are clearly equivalent to the expansion of the
harmonic functions as a series of sines and cosines of angles of the form ey-+Bl4yV.
It remains to explain the uses to be made of these expressions.

§ 4. The disturbing function.

In the theory of the disturbing function the differentiation with respect to the
elements of the orbit of the disturbed body is an artifice to avoid the determination
of the three component disturbing forces, by means of differentiation with regard to
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the radius vector, longitude and latitude. In the present problem we have to deter-
mine the perturbation of a satellite under the influence of the tides raised by itself
and by another satellite. Where the tides are raised by the satellite itself, the
elements of that satellite’s orbit of course enter in the disturbing function in expressing
the state of tidal distortion of the planet, but they also enter as expressing the position
of the satellite. It is clear that, in effecting the differentiations above referred to, we
must only regard the elements of the orbit as entering in the disturbing function in
the latter sense. Hence it follows that even although there may be only one satellite,
yet in the evaluation of the disturbing function we must suppose that there are two
satellites, viz.: one a tide-raising satellite and another a disturbed satellite.

In this place, where the planet is called the earth, the tide-raising satellite may be
conveniently called Diana, and the satellite whose motion is disturbed may be called
the moon. After the formation of the differential equations Diana may be made
identical with the moon or with the sun at will, or the analysis may be made appli-
cable to a planet with any number of satellites.

As above stated, unaccented symbols will be taken to apply to Diana, and accented
symbols to the moon.

The first step, then, 1s to find the tidal distortion due to Diana.

Let M be the projection of Diana on the celestial sphere concentric with the earth,
and P the projection of any point in the earth.

Let pé, pn, p{ be the rectangular coordinates of P and rM,, »M,, »M; the rectangular
coordinates of Diana referred to axes A, B, C fixed in the earth.

Then since p, r are radii vectores, & 7, { and M,, M,, M; are direction-cosines.

The tide-generating potential V (of the second degree of harmonics, which will be
alone considered) at P is given by

according to the usual theory.
Now .
cos PM=¢&M, +9M,+ (M,

and

=429 IM My +-2€0M, M,

+7, —28° M+ M2 —2M,?
3

cos* PM—1 2&;MM2—|—2S —n* My M

+3E
Also by previous definition, r=3§um/c?; so that

3/1, T [e(1—e?)P
o <1—e2>3[ ]

X= [““q’eﬂml, Y_{(l )]Mz,z [”“:”JMS. L (@9)
5 A 2

Now let
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Then clearly

228 X4 VP27
3 3

r 2 p? X2 Y2 . 2
Ve g =2 XY 42 XY L onYZ428(XE 43 £

i
(i— 2

Now assume that the five functions 2XY, X?—Y?, YZ, XZ, X?4Y?—2Z? are each
expressed as a series of simple time-harmonics; it will appear below that this may
always be done. We now have V expressed as the sum of five solid harmonics p*n,
P (6*—n?), &c., each multiplied by a simple time-harmonic. According to any tidal
theory each such term must raise a tide expressible by a surface harmonic of the
same type, and multiplied by a simple time-harmonic of the same speed ; moreover,
each such tide must have a height which is some fraction of the corresponding equi-
librium tide of a perfectly fluid spheroid, but the simple time-harmonic will in general
be altered in phase.

Now if r=a+o be the equation to the wave-surface, corresponding to a gene-
rating potential V=[7/(1—e%?] p* 2&XY, then when the spheroid is perfectly fluid,
ola=[7/q(1—e*?] 2&XY, where §=2%g/a, according to the ordinary equilibrium
theory of tides. (It will now be assumed that we are dealing with bodily tides of the
spheroid ; if the tides were oceanic a slight modification would have to be introduced.)

In a frictional fluid, the tide & will be reduced in height and altered in phase.

Let ¥3D represent a function of the same form as XY, save that each simple time-
harmonic term of XY is multiplied by some fraction expressive of reduction of height
of tide, and that the argument of each such simple harmonic term is altered in phase ;
the constants so introduced will be functions of the constitution of the spheroid, and
of the speed of the harmonic terms. Also extend the same notation to the other
functions of X, Y, Z which occur in V.

Then it is clear that, if #=a-+o be the equation to the complete wave surface
corresponding to the potential V,

(1—ep 8 Z=ogy ¥P+25 5T X0 pon pz s w2

N 49 —2¢° xz+£2_2%2
2 3 3

(30)

This expression shows that o is a surface harmonic of the second order.
Then by (17) we have for the disturbing function for the moon, due to Diana’s tides,

w1

where o is the height of tide, at the point where the moon’s radius vector pierces the
wave surface.
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Hence in the expression (30) for o, we must put
=M/, n=M,, (=M,
Then by analogy with (29), let

x=[ 5y, v Aoy, gLy
r L 7 7

and we have

7

_TT 1 lavsd X?—Yy" x2_£2 177/ e
W= a (1—e2)3(1;e'2)3l:2XY ¥P+2 B 5 +2Y'Z YZ+2X'Z' ¥Z

4e X2 4 Y?— 2% ¥ + P*—2%5°
2 3 3 .

(31)

This is the required expression for the disturbing function on the moon, due to
Diana’s tides.

So far the investigation is general, but we now have to develop this function so as
to make 1t applicable to the several problems to be considered.

11
SECULAR CHANGES IN THE INCLINATION OF THE ORBIT OF A SATELLITE.

§ 5. The ]‘)ertwbed satellite moves 1n a civcular orbit inclined to o fixed plane.—
Subdivision of the problem.

In this case e=0, '=0, r=¢, 7'=¢/, so that the functions X, Y, Z and X', Y’, Z’
are simply the direction cosines of Diana and the moon, referred to the axes A, B, C
fixed in the earth. Hence X=M,, Y=M,, Z=M;, and the five formulas (24-8) give
the functions X2—=Y? 2XY, 2YZ, 2ZX, 1—Z% 1In order to form the functions in
gothic letters we must express these functions as simple time-harmonics:

The formulas (24) to (28) are equivalent to the expression of the five functions as a
series of terms of the type A cos (ax+B0+yN+35). Now y is the angle between a
point fixed on the equator and the autumnal equinox, and therefore (neglecting
alterations in the diurnal rotation and the precessional motion) increases uniformly with
the time, being equal to n¢+-a constant, which constant may be treated as zero by a
proper choice of axes A, B, C.

¢ is the true longitude measured from the autumnal equinox, and is equal to
DNt+e—y, since the orbit is circular ; also ¢ may for the present be put equal to zero,
without any loss of generality.

Then if in forming the expressions for the state of tidal distortion of the earth
we neglect the motion of the node, the five functions are expressed as a series of simple
time-harmonics of the type A cos (ant+B0t+ ().
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The corresponding term in the corresponding gothic-letter function will be
KA cos (ant+pB0t+{—k), where K is the fraction by which the tide is reduced and
k is the alteration of phase.

It appears, from the inspection of the five formulas (24-8), that there are tides of
seven speeds, viz.: 2(n—fR), 2n, 2(n+02), n—20, n, n+20, 20.

The following schedule gives the symbols to be introduced for reduction of tide and
alteration of phase or lag.

Semi-dinrnal. Diurnal. Fortnightly.
s A N - R
Slow.  Sidereal. Fast. Slow. Sidereal. Fast.
Speed . . .. . . L . 2(n—4M), o2, 2(n+M,) w—202, n+ 202, 202
Fraction of equilibrium tide. F, F F, G G Gy H
Retardation of phase or lag. . 2f; 2f 2fy o g o) 2h

The gothic-letter functions may now at once be written down from (24-8).
Thus,

9 (%2 — £2) —_ F]m_4'62(x-0)—2f, + F2‘&72K262x—2f + FQKQGQ(xH?)—Qf,
+F1w4<e—2(x—6)+2f, _|_F27D.2K26—2x+2f_|_ F2K4«6—2(x+9)+2ﬁ L. (32)

—4¥P+/ —1=the same, with second line of opposite sign. . . . (33)

2PZ = — Gw’kex 8 4 Gwr (o —kK)ex ™8 +Gymrdex T2

—Gw’ke” %18 Gk (o —kk)e XT84 Gymrle~ 00 (34)
9¥Z ./ —1=the same, with second line of opposite sign. . . . . . (35)
3—Z'=3—2omrc+Ha'?e¥ M4 HaPe 4, . . . . (36)

The fact that there is no factor of the same kind as H in the first pair of (36) results
from the assumption that the tides due to the motion of the nodes of the orbit are
the equilibrium tides unaltered in phase.

The formulas for 2(X?*—Y"?), —4X'Y'y/—1, 2Y'Z, 2X'Z'r/ =1, +—Z" are found by
symmetry, by merely accenting all the symbols in the five formulas (24-8) for the
M functions. In the use made of these formulas this accentuation will be deemed to
be done.

At present we shall not regard y as being accented, but in § 12 and in Part ITI. we
shall have to regard y as also accented.

We now have to develop the several products of the X’ functions multiplied by the
¥ functions.
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Before making these multiplications, it must be considered what are the terms
which are required for finding secular changes in the elements, since all others are
superfluous for the problem in hand.

Such terms are clearly those in which § and 8" are wanting, and also those where
0—0 occurs, for these will be wanting in # when Diana is made identical with the
moon. It follows therefore that we need only multiply together terms of the like
speeds. In the following developments all superfluous terms are omitted.

Sema-diurnal terms.
9 -
These are 2X'Y” ¥ +2 X 3 LA 2£g.
If we multiply (24) (with accented symbols) by (32), and (25) (with accented
symbols) by (33), and subtract the latter from the former, we see that y disappears
from the expression, and that,

8X' Y ¥R +2(X2—Y"?) (¥2—P?) =Tirst line of (24) X second of (32)
+Second of (25) X first of (33)
Then as far as we are concerned

X2—Y2 ¥ —P°
2 2

— % [Flméw—"‘l*e%@'—e)fﬁ', _I_ 4F‘&$‘2 K2m.’2 K/ Ze-er2f + :E‘2§4<K’4¢e—-2(9 —9)—2f,J

+A[Frotate 200t 4 4 Pl 2% 4 Fydil 4= | (37)

2X'YED 42

If x had been accented in the X’ functions, we should have had 2(x—yx’) in all the
indices of exponentials of the first line, and —2(y—x’) in all the indices of the second
line. These three pairs of terms will be called Wy, Wy, Wy,

Diurnal terms,

These are 2Y' Z’VZ + 2X'Z'¥Z..

If the multiplications be performed as in the previous case, it will be found that x
disappears in the sum of the two products, and, as far as concerns terms in 6'—0
and those independent of 8 and ¢, we have

oY ZVZ+2X 7' ¥Z
=Ga%kw % 078 L Gasu(we — i) w K (w'w’— k') e+ Gy win K S0 e

-+ Glm Km- 3k 6“‘2("'"’9)+">’1+Gmk(mw—lm)w K (m o —ic «)es +Gymi® m K /3e¥0—0te. | (38)

If x had been accented in the X’ functions we should have had y—y  in all the
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indices of the exponentials of the first line, and —(y—y’) in all the indices of the
second line. These three pairs of terms will be called W,, W,, W..

Fortnightly term.

This is $(3—2°)(3—Z).

Multiplying (86) by (28) when the symbols are accented, and only retaining desired
terms,

G —2") (3—2) =83 —2wwrn) (3—20'a k') + §Ha e s 220 =00

+%HZ§2KZE,2I_€/262(G —0)+2h . (3 9)

Even if x had been accented in the X’ functions, neither x or x” would have
entered in this expression. These terms will be called W,

Then the sum of the three expressions (37), (38), and (39), when multiplied by =7'/g,
is equal to W, the disturbing function.

If Diana be a different body from the moon the terms in ¢'—@ are periodic, and the
only part of W, from which secular changes in the moon’s mean distance and
inclination can arise, are the sidereal semi-diurnal and diurnal terms, viz.: those in
F and G, and also the term independent of H in (39). These terms being independent
of @ are independent of €, the moon’s epoch. Hence it follows that, as far as con-
cerns the influence of Diana’s tides upon the moon, dW/d€ is zero, and we conclude
that—the tides raised by any one satellite can produce directly no secular change in the
mean distance of any other satellite.

But Diana being still distinct from the moon, the F-, G-, and part of the fortnightly
term, which are independent of 6, do involve N and N'; for W contains terms of the
forms e**¥, e e*N+P¥) glgo it has terms independent of N, N'. Hence dW/dN’
will contain terms of the form e**¥, e*@¥+#¥) or their equivalent sines or cosines.

Now by hypothesis there are two disturbing bodies, and we know by lunar theory
that the direct influence of Diana on the moon is such as to tend to make the nodes
of the moon’s orbit revolve on the ecliptic; on the other hand, there is a direct
influence of the permanent oblateness of the earth on the nodes of the moon’s orbit.

If the oblateness of the earth be large, the result of the joint influence of these two
causes may be such as either to make the nodes of the moon’s orbit rotate with a very
unequal angular velocity, or perform oscillations (possibly large ones) about a mean
position. If this be the case the mean value of dW/dN" may differ considerably
from zero. This case is considered in detail in Part III. of this paper.

If on the other hand the oblateness be small the nodes of the orbit revolve with a

# Tf therc be a rigorous relationship between the mean motions of a pair of satellites this may not be
true. This appears to be (abt least very nearly) the case between two pairs of satellites of the planet

Saturn.
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sensibly uniform angular velocity on the ecliptic. This is the case at present with
the earth and moon. Here then dW/dN’, as far as concerns the influence of Diana’s
tides on the moon, is sensibly periodic according to simple harmonic functions of the
time. From this we conclude that :—

If the nodes of the satellites’ orbits revolve uniformly on the plane of reference, then
the tides raised by any one satellite can produce no secular change in the inclination of
the orbit of any other satellite.

There are thus two cases in which the problem is simplified by our being permitted
to consider only the case of identity between Diana and the moon :

1st. Where there are two or more satellites, but where the nodes of the perturbed
satellite’s orbit revolve with sensible uniformity on the plane of reference.

2nd. Where the planet and satellite are the only bodies in existence.

In these two cases, after differentiation of the disturbing function with respect to
the accented elements, we shall be able to drop the accents.

There is also a third case in which Diana’s tides will produce a secular effect on the
inclination of the moon’s orbit, and this is where the nodes of the moon’s orbit either
revolve irregularly or oscillate. This case is enormously more complicated than the
others, and forms the subject of Part IIL of this paper; I have only attempted to
solve it on the supposition of the smallness both of the inclination of the orbit, and of
the obliquity of the ecliptic.

The first of these three cases is that which actually represents the moon and earth,
together with solar perturbation of the moon at the present time.

In tracing the configuration of the lunar orbit backwards from the present state, we
shall start with the first case; this will graduate into the third, and from this it will
pass to a state represented to a very close degree of approximation by the second.

We are not at present concerned to know what are the conditions under which
there may be approximate uniformity in the motion of the nodes; this will be
investigated below.

We will begin with the first of the three cases, and will find also the rate of change
of the diurnal rotation and of the obliquity of the planet.

The second case will then be taken, and afterwards the third case will have to be
discussed almost ab initio in Part 111

§ 6. Secular change of inclination of the orbit of o satellite, where there is a second
disturbing body, and where the nodes revolve with sensible uniformity on the fixed
plane of reference.

By (13) the equation giving the change of inclination is

gy 1 LAW
Tt sin /dzv’l' tan 37"
MDOCCLXXX. 5B
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As shown above, however, we need here only deal with a single satellite, so that Diana
and the moon may be considered as identical and the accents may be dropped to all
the symbols, except in the differential coefficients of W. Also we need only maintain
the distinction between Diana and the moon as regards N, N and ¢, ¢ ; and after the
differentiations of W these distinctions must also be dropped. Hence = only differs
from =’, « from «, = from =, and « from « in the accentuation of NV.

Also since 0=n0t+e€, '=0"t+¢, therefore we may replace '—6 in the three
expressions (37-9) by € —e.

If we put sin j=2pq, tan £j=gq/p, and write ¢(, €) for the operation 2110 I ;56
putting N=0N’, e=¢ after differentiation; then from (13) we have
f dj
Tk d{f—qS(N AL
Also for brevity, let ¢(IV )_5_(_7 y N” é(e ) —; so that ¢(V; €)=¢(V)4¢(e).

The terms corresponding to the tides Of the seven speeds will now be taken
separately, the coefficients in =, k will be developed, and the terms involving N'— N
selected, the operation ¢(V, €) performed, and then N’ put equal to &N, and € to €.
For the sake of brevity the coeflicient 7*/g will be dropped and will be added in the
final result. The component parts of W taken from the equations (37-9) will be
indicated as Wy, Wy, Wy for the slow, sidereal, and fast semi-diurnal parts; as Wy,
W,, W, for the slow, sidereal, and fast diurnal parts; and as W, for the fortnightly
part.

Slow semi-diurnal terms (2n—20).

W,= %Fl[még%e%'—é—%l+m‘1'w’4ce—2(ﬂ—e)+2f1:l L. L. (40)
Let
W= Lt deH =92
Since
w=Pp—qQe”
Therefore

- P4‘p4— 4 P3Qp3q6N+ 6 Pa@zngzemv_ 4 stpqseszv + Q49~Le4.N
w'*= the same with —N" in place of NV
Therefore

W= % { PSPS + 1 6P6 szeqzezv-zw + 3 6P4Q4p49462(N— N’ _|_ 1 6P2Qsp2q6 es(N-zv ]
+ qusewv-zv') ) X< ~of,
Therefore
W= s AnPS—%Q%pS—Q/nq2nen(N-—N’)+2(e'—e)—2fl

where n=0, 1, 2, 8, 4.
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Then

7-—2n q%—l 6—21,

‘/’(N)WI'—E \/

P(e)wi= —3; \/4:1 A, P32 Qngl—gnt1 =21
Therefore by addition

SV, ywi=3[n(p*+¢?) — 4g7| PS=2 Q1= g=1 o

2,/ —1
Now when
n=0, A,=1, 7z(p2+q2)—4gg;—4g2
=1, =4, —p?—3¢?
=2, =9, =2(p"—7)
=3, =4, =3p*—¢®

If we had taken the second term Qf W, we should have had the same coefficients
but multiplied by —e*/2,/—1 instead of by e~*:/2,/—1.  Therefore, since
(¢ —e~%)/24/ —1= sin 2f,

BV, §Wi=—F sin 26)[ — Pp’q+4P°Qpq( p*—3¢%) +18 P*Q*p’*(p*—g?)

+4PQ°pq*(3p°—q*) +@°pq"]
Then let

T =4[ Pp*— AP QpH( p*—3¢°) — 18 P*Q'p’¢*(p*— ) — 4 P*Q°¢*(3p° — ) — @%¢°] . (41)
and remembering that 2pg= sin j, we have

WV, oW =24 F sin2f;sing . . . . . . . (42)

Stdereal semi-diurnal terms (2n).
WH—F[w K m"gfc'ge 2f—|—_7§2;<2m'2:<’2e2f] Co . (43)

Here the epoch is wanting, so that ¢(N, €)=¢(NV).
5B 2
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Let
W= (m’L(Z_E_T,K/)g
w=Pp—Qqe", k=Qp+ Pge™
wr=PQ(p*—¢")+pg(Pe"— Q%)
'k’ = PO~ ) +palPe" — @)
V' wi= P p*—*)+PQpq(p*— ) [P (e +e7) — Q¥ (e~ +¢")]
PG Plem T Qo= PRQYgV+Y o= ))]
Wam PP ) — (1 = P+ AP T AP Qg o
+ 4P2Q6p2g2(p2_q2)26N—N’+p494<[P86—2(N—N’)_I_ QSeQ,(N—N’)]
1 .
$(V)wu=—5 7= [4pa( P’ — PP (P*— Q") +2p°¢(P*— @°)]
If we had operated on the other term of Wy; we should have got the same with the
opposite sign, and ¢ in place of ™.
Then let
F={ (=) {2(pP"— @) P*P+p*P(P+Q9} . . . . (44)

and we have

SV, gWy=24FFsin 2fsing . . . . . . . . (45)

Fast semi-diurnal terms (2n-+2.0).
W= 1 [ (b be—2 =028 L b bgde=426] . (46)

Since « is obtained from = by writing @ for P, and —P for @, therefore by writing
—2f, for 2f;, and interchanging @’s and P’s we may write down the result by symmetry
with the slow semi-diurnal terms. Then let

&= QS — 4 P2Q°pY p*—389°) — 18 PQ*p*q*( p*—¢*) — 4 POQP (3p*—¢*) — P¢%] . (47)

and

¢(.ZV; G)WIII,= _2£2F2 SiIl Zf‘z Sinj . . . . . . . (4:8)

Slow diurnal. terms.

W, =0 [a%a" 078 fadamS’e e . . . . . (49)

Let w;=n%w"3K¢¥ =978,
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For the moment let =17, then since mw=Pp—Qqe", and since P= cos I, Q=sinl,
therefore da/dI=—«, and therefore dw'/dl=—4w.
Hence (see slow semi-diurnal terms)

‘G)'SK:—- P3Qp4<+ P2 (PZ__ 3Q2)p3q61\7__ SPQ (P2 —_ Q2)p2q2621\7+ QQ(?,P% —_ QQ)pq363N__ PQ3q4;e4«N
§'35'= same with — N’ for N

- Hence
W, =[ PSQ%p8 + P P?—3Q%)%p’q% "' 49 P2QY( P2 — Q*)*ptqteX ¥~
+ Q48 P2 — Q)P eV 4 PRQ0gBeAT =] 2=
¢(N)W1=§%[ PHP?—3Q%*pPq+ 18 P2Q*(P*— Q%)*p%g®
+3Q P~ @Y pr QY|

- _4 P6Q2p7q'+ 4 pt( Pz__ng)zpsq?, +36 P2Q2( P2— Q)35
= 9
+AQEP— @ pi+4P QL |

Adding

P, = —2—(‘6/_%1[41’ "Qp'g— PHP*—3Q% pq(p*—3¢°)
— 8PP — Q) p’¢(p*— ) — @' BP*— @fpg’ (3p"— ") — 4 P*Q"p]
Then let

= AP QP — PP =3P (5= 3¢)— 18P (P = @) (5 —1)
— Q' BP— P ¢Ep*—¢) —4PQ%"] . (50)
and we have
oV, oW, =2 G, sing,siny . . . . . . (51)
Sidereal diurnal terms (n).
W,=0wk(zm—r)a' (a's — k) 8 +mr(mm— K)o’ (a's"— k)] . (52)

Here the epoch is wanting, so that ¢(V, e)=¢(N).
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Let

Wy=wK(@w— kK)o K (a'e' —Ki)

wr=PQ(p'—¢") +pg(Pre™—%")

?ﬂé—K5=(Pz-@)(pz—qg)—2Pqu(e”+e"N)

wr(ws — ki) =PQ(P*— Q)[(p*—¢*f —2p°¢* |+ P(P*—3Q)pg( p*—*)e™
— Q3PP — Q) pq( pP—¢?) " — 2 PQpPq* (P62 — (2™
o' (o's’—K'x')= the same with — N instead of NV

wy= PP — Q) (p'— ) —2p°¢* P+ PH{P*—3Q°)p*g*( p*—¢*) P~
+ Q4(3 P2 Qz)zpzqz( 102—- qz)zeN—N' 44 Pngp‘*g*( Ple—An—N) + Q* LU~ N/,)

PN wy= -—;j—;—l {pg(P*— @ (PHP*—3Q%) — QB PP — Q°))+ 8P QP — Q*)p’e’}
Now

PHP—3Q7P— Q3PP — Q)= (P*— Q*)(P*+ Q' — 6 P*Q?)
Put therefore

G=4(P— Q) {((P"— )P+ Q=6 PP +8PQPp} . . . (53)
and we have

P, oW,=2Gsingsing . . . . . . . . (54)

Fast diurnal terms (n--210).

W, =Gy wr’a'cSe™ 7978 - mx ok Ite] L L L (B5)

By an analogy similar to that by which the fast semi-diurnal was derived from the
slow, we have

—P 4(P P33P — ) — 4P Q%] . (56)
and

P, §Wo=—2,Gysingysing . . . . . . . (57)
Fortnightly terms (212).

Wo=3[ (3 —2mmici) (5 — 20'a' k') + Haia e~ 4 Hisia 22 =9+34] | (58)
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Tt will be found that ¢(IV) performed on the first term is zero, as it ought to be
according to the general principles of energy—for the system is a conservative one as
far as regards these terms.

Let

Wo=(wrw’k’) X+

WK=PQ]02+ZOQ(P2— QQ)eN_PQQQe.‘JN

— 2PQ(P2 — QQ)pq?)GSN_'_ P2Q2q4<6w
'a_b"zk’ ?—=the same with — N’ for NV

VVO= I—P/J:Q‘LPS _I_ 4P2Q2(P2 —_— Q2)2p6q2el\7—-1\7’+ [(P2 — Q2)2__ 2_P2Q2:] p494e2(N—N')
+ 4P2Q2(P2 — QQ) 2})2q663(N —N) + P4Q449864(N—N ')](,2(6’—;)+2h
W= APQE @ = G2 P QT
127 QP = @pg+ 4P
P
Pl)w,= _5\%[4 PUQpTg+16 PRQY PP — Q)b 4] (P2— Q) — 2 P2 i
16 PP (P2 Q%) pg+ LPQH 19-0’]

Adding and arranging the terms

I, Jwi=—g g PP = )~ PP — QP — )’
— 20 (p*— ) (PP — @) —2P*Q*F}
Then let
D=2 (1) 2 PP = Q)
PP =P (PP — Q) —2PQF} . . (59)
and we have

PN, gWy=—23HH sin 2hsing . . . . . . . (60)

This is the last of the seven sets of terms.
Then collecting results from (42-5-8, 51-4-7, 60), we have

LG 7 Yoo B, sin of, + 2T sin 2f— 25, F, sin 26,4 26,0, sin g,

sinjdt = § &
+2@G sin g— 28, G, sin g, —23H sin 2h} . (61)
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The seven gothic-letter functions defined by (41-4-7, 50-3-6-9) are functions of the
sines and cosines of half the obliquity and of half the inclination, but they are
reducible to forms which may be expressed in the following manner :—

F1+ .= Lcosj[l—2 sin®j—2 sin? (1 —F sin®j) 4§ sin® (1 —7F sin?y) | )
F1—F.= Lcosi[l1—Fsin?j—§ sin®i(1—4 sin?y)]
G+ = —1 cos j[1— sin®j—7 sin® i(1—22 sin?j)+§ sin* (1 —F sin?j)]
G —@Gry=—1% cos ([ 1—% sin®j— 8 sin? (1 —3 sin?y)] > . (62)
&F = Lcosi[Lsin®j+ sin?i—3 sin® ¢ sin®y]
= Lcosi[l— sin®j—2sin? 743§ sin® ¢ sin?y]
3 = —1 cosy[2sin? j43 sin? ¢(1—§ sin®j) — 4P sin* o(1—F sin?y) ]

These coefficients will be applicable whatever theory of tides be used, and no
approximation, as regards either the obliquity or inclination, has been used in obtaining
them.

§ 7. Application to the case where the planet is viscous.

If the planet or earth be viscous with a coeflicient of viscosity v, then according to the
theory of viscous tides, when Inertia is neglected, the tangent of the phase-retardation
or lag of any tide is equal to 19v/2gaw multiplied by the speed of that tide; and the
height of tide is equal to the equilibrium tide of a perfecﬂy fluid spheroid multiplied

by the cosine of the lag. If therefore we put , we have

tan 2f‘1=~—-;———-—, tan 2f=%n, tan 2f2=w

n—20 n+ 242 20
t = , b =-,  tan 2 =——, tan 2h="—
amg=""y an g= P 2o P P

¥, = cos 2f;, F= cos 2f, F,= cos 2f,, G;= cos g}, G= cos g, Gy= cos g,
and H= cos 2h.

Therefore

£ 9

ksin j c{t ~{£1 sin 4f +4F sin 4f_:!?2 sin 4f; +Q}}1 sin 2g1

-+ sin 29— @, sin 2g,—Wsin 4h] . . . (63)
This equation involves such complex functions of ¢ and j, that it does not present to

the mind any physical meaning. It will accordingly be illustrated graphically.
For this purpose the case is taken when the planet rotates fifteen times as fast as the
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satellite revolves. Then the speeds of the seven tides are proportional to the
following numbers : 28, 30, 32 (semi-diurnal); 13, 15, 17 (diurnal) ; and 2 (fortnightly).

It would require a whole series of figures to illustrate the equation for all values of
vand j, and for all viscosities. The case is therefore taken where the inclination j of
the orbit to the ecliptic is so small that we may neglect squares and higher powers of
siny. Then the formulas (62) become

F1+F,=1(1—2 sin? i+ sint 7)
&F1—F,=1 cos ¢(1—3 sin?7)
&+ G, = —1(1—7 sin® 442 sint )
&, — = —1 cos ¢(1—3 sin?¢)

=1 cos 7 sin? s, (k=1 cos ¢(1—2 sin’7)

PH=—2 sin® 1(1—% sin?7)

From these we may compute a series of values corresponding to 1=0°, 15°, 30°, 45°,
60°, 75° 90° (I actually did compute them from the P, @ formulas.)

I then took as five several standards of the viscosity of the planet, such viscosities
as would make the lag f; of the slow semi-diurnal tide (of speed 2n—210) equal to
10°, 20°, 80° 40° 44°. Then it is easy to compute tables giving the five corre-
sponding values of each of the following, viz. : sin 4f), sin 4f, sin 4f,, sin 2g,, sin 2g,
sin 2g,, sin 4h.

Then these numerical values were appropriately multiplied (with CRELLE’S three
figure table) by the sets of values before found for the 4f’s, €&’s, &e.

From the sets of tables formed, the proper sets were selected and added up. ~ The
result was to have a series of numbers which were proportional to dj/ sin jdt.

Then the series corresponding to each degree of viscosity were set off in a curve,
as shown in fig. 4.

The ordinates, which are generally negative, represent dj/sin jdt, and the abscissee
correspond to ¢, the obliquity of the planet’s equator to the ecliptic.

This figure shows that the inclination j of the orbit will diminish, unless the obliquity
be very large.

It appears from the results of previous papers, that the satellite’s distance will
increase as the time increases, unless the obliquity be very large, and if the obliquity be
very large the mean distance decreases more rapidly for large than for small viscosity.
This statement, taken in conjunction with our present figure, shows that in general the
inclination will decrease as long as the mean distance increases, and wvice versd. This
is not, however, necessarily true for all speeds of rotation of the planet and revolution
of the satellite.

The most remarkable feature in these curves is that they show that, for moderate
degrees of viscosity (f] less than 20°), the inclination j decreases most rapidly when ¢

MDCCCLXXX. 5 ¢
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the obliquity is zero; whilst for larger viscosities (f; between 20° and 45°), there is a
very marked maximum rate of decrease for obliquities ranging from 30° to 40°

Fig. 4.

Diagram illustrating the rate of change of the inclination of a satellite’s orbit to a fixed plane on which

its nodes revolve, for various obliguities and viscosities of the planet (Sl‘:rllj g% when j is small).
We now return to the analytical investigation.
If the viécosity be sufficiently small to allow the phase retardations to be small, so
that the lag of each tide is proportional to its speed, we may express the lags of all
the tides in terms of that of the sidereal semi-diurnal tide, viz.: 2f Then on this

hypothesis we have

sin 4f, sin4f - sin4df, + sin 2g, 4 sin 2g
sin 4f ? gin4f” 7 sindf > gindf T 2 7 gin4f 2
sin2g, sin 4h

0
smat =2 Grgp=h where A="

And

e §i=§ sin 4 )+ —dFy+ 5@+ G — Go) — NP1+ Fo+ G+ Gt B)]

But by (62)
1T+ 3G —E,)=1 cos s and F+5G=§ cos e

F+-Fo+ G+ G+ 39 =0.

and
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These results may of course be also obtained when the functions are expressed in
terms of P, @, p, ¢
‘Whence on this hypothesis

a7 2
——=— YT gnaflcosi . . . . . . . . (64)

§ 8. Secular change in the mean distance of a satellite, where there s a second
dasturbing body, and where the nodes revolve with sensible untiformity on the fixed
plane of reference.

By (11) the equation giving the rate of change of & is

1 d‘g"
% de

As before, we may drop the accents, except as regards €.
In § 6 we wrote ¢(e) for the operation tan %y ;,, hen(,e d =L qS(e)W and by

reference to that section the result may be at once written down We have

%%‘;—:— {2®,F, sin 2f, — 2@, F, sin 2f, 42T, G, sin g, —2T,G; sin g,—2AH sin 2h] .  (65)
Where

& =H PP+ Qo+ 16 PP Q@ (Prp -+ Q') + 36 PQpet] 7
®,= the same with @ and P interchanged
I, =2[ PPQY P+ Q*¢F) + P PP — Q) S+ Q (3 PP — Q) pg®
‘ +9P2QY(P2—Q2)ptqt]
I',= the same with @ and P interchanged -
A =3[P +g) +APQRP— PP (1)
[P — QP —2P QT

Y
.

(66)

These functions are reducible to the following forms

2(®;4®y)=1— sin®j+3 sin®j— sin® i(1—2 sin? j4-§ sin*y)

. 41 sin* ¢(1—5 sin®j 438 sin'y)
2(®, —®@,)= cos ¢ cos j[ 1 —1} sin®j—} sin? 4(1 —4 sin?j) ]
2(I,+Ty) = sin®j—3 sin® j4 sin® ¢(1 —F sin® j4-§ sin*7) (67)

—1 sin*¢(1—5 sin®j+ 38 siny)
2(I",—T') = cos ¢ cos j[sin?j+ sin® ¢(1—3 sin®j) |
2A =32 sin*j+ sin? i($ sin? j—1° siny)
+2 sin* ¢(1 —5 sin®j 438 sin'y) J
5 c 2
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§ 9. Application to the case where the planet is viscous.
Asin§7

1d 2 . . . . .
. C—f:é—{q)l sin 4f; —®, sin 4f,4T', sin 2¢;—Ty sin 2g;—A sin 4h} . . (68)
If j be put equal to zero this equation will be found to be the same as that used as
the equation of tidal reaction in the previous paper on *“ Precession.”
If the viscosity be small, with the same notation as before

1dg = .

%Etgzgsm 4f[(1>l-—q)2_|_%(1"1—1‘2)_)\(¢)1+q>2+I‘1+I‘2+A):|. - (69)
Now

O, — P, +L(I'y —T,) =1 cos v cosj
and
Therefore
2
%%:%% sin 4f[cos¢cosyj—N]. . . . . . . . (70)

We see that the rate of tidal reaction diminishes as the inclination of the orbit
increases.

3 10. Secular change in the inclination of the orbit of a single satellite to the invariable
plane, where there is no other disturbing body than the planet.

This is the second of the two cases into which the problem subdivides itself.

If there be only two bodies, then the fixed plane of reference, which was called the
ecliptic, may be taken as the invariable plane of the system. It follows from the
principle of the composition of moments of momentum that the planet’s axis of rotation,
the normal to the satellite’s orbit and the normal to the invariable plane, necessarily lie
in one plane. Whence it follows that the orbit and the equator necessarily intersect
in the invariable plane. From this principle it would of course be possible either to
determine the motion of the node from the precession of the planet or vice versd, and
the change of obliquity of the planet’s axis (if any) from the change in the plane of
the orbit or wice versd ; this principle will be applied later.

We have found it convenient to measure longitudes from a line in the fixed plane,
which is instantaneously coincident with the descending node of the equator on the
fixed plane. Hence it follows that where there are only two bodies we shall after
differentiation have to put N=N"=0.
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Then since ='=Pp—Qqe"’ thelefme \/ ng, and similarly

de’ Qg  de Pg  de’ _ Ig

AN'™ T /=1 AN T /=1 AN /=T

when N'=0.

Also after differentiation when N=0, m=w==cos (i), k=k=sin (i)

In order to find dj/dt we must, as before, perform ¢(XNV, €) on W. Then take the
same notation as before for the W’s and w’s with suffixes.

Slow sema-diurnal term.

d , do i)
avas'el)=a" =, 7:%
and
(V) (f=" /4) -3 j;~1.w 1@0 also qS(e)e%“)"zf:——2\/1_1.%6_%’
Hence ’ N
A, iy = =
and

d(N, e W, =="«F, sin 2f,.

Sidereal semi-deurnal term.

dr’ ds’ 2wk 2w%k3

dwy
ay =% ( Jﬁ“&zﬁ)z V——l(wP<1+KQq) — /=1 P

and since ¢(e) W;=0, therefore
d(, ¢) W, =2x"F sin 2f

Fast semi-dvurnal term.

By symmetry
(N, e Wi==«"F, sin 2f,

Slow diurnal term.

a do’ dr’ w?
‘Ww 3k = 3w” Kt = \/:I(3KQQ—-‘$PQ)

™8,

ANV, W= ——— ti;kz(3(.v)lc——Pw-{—4 )= o
A N s oK) =5 /=1

woKk(w?—3k%)

and

PN, W, = —5" k(w*—3k%)Gy sin g,
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Sidereal diurnal term.

d / ’r 7
== (et o)== P and S 'l =) =0
Therefore
N, &w = il — )
( =T
and

M, e Wy=wx(z’—«*)*G sin g

Fast diwrnal term.

By symmetry
SV, e W;=mx5(3a"— k"), sin g,

Fortnightly term.

a ., ,, 2w
— & )= = G Q—P)
and

DV, ewy= -5 ;211—_—1 wk? |:21D'K(QK—PGT) +4w%k? jl—é—\—/—:~2wk(w —«?)

‘Whence
A, W =38w’*(z*—«*)H sin 2h

Then collecting terms we have, on applying the result to the case of viscosity,

-Z%: %——[ Tk sin 4f, 4+ w33 sin 4f4+3wk’ sin 4f, 43w (w*—«®) sin 4h

—3a°k(w®— 3«7 sin 2g)+Iwr(w’—«%)? sin 2g+$wi(3w’—«?) sin 2g,] . (71)

In the particular case where the viscosity is small, this becomes

= lvve
&I&

%E 1n4f'wx=1§s1n4fsm(z+j) N ()

The right hand side is necessarily positive, and therefore the inclination of the orbit
to the invariable plane will always diminish with the time.

The general equation (71) for any degree of viscosity is so complex as to present no
idea to the mind, and it will accordingly be graphically illustrated.

The case taken is where n/2=15, which is the same relation as in the previous
graphical illustration of §7.

The general method of illustration is sufficiently explained in that section.

Fig. 5 illustrates the various values which dj/dt (the rate of increase of inclination
to the invariable plane) is capable of assuming for various viscosities of the planet, and
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for various inclinations of the satellite’s orbit to the planet’s equator. Each curve
corresponds to one degree of viscosity, the viscosity being determined by the lag of
the slow semi-diurnal tide of speed 2n—2£0. The ordinates give dj/dt (not as before
dj/sin jdt) and the abscisse give 147, the inclination of the orbit to the equator.

1 4
Fig. 5.

Diagram illustrating the rate of change of the inclination of a single satellite’s orbit to the invariable plane,

for various viscosities of the planet, and various inclinations of the orbit to the planet’s equator (%)

We see from this figure that the inclination to the invariable plane will always
decrease as the time increases, and the only noticeable point is the maximum rate of
decrease for large viscosities, for inclinations of the orbit and equator ranging from
60° to 70°. If n/2 had been taken considerably smaller than 15, the inclination would
have been found to increase with the time for large viscosity of the planet.

§ 11. Secular change in the mean distamce of the satellite, where there is no other
disturbing body than the planet.—Comparison with result of previous paper.

To find the variation of ¢ we have to differentiate with respect to €, and the follow-
ing result may be at once written down
dE_ 17 5. 8 b 6,62 2.6 o 44 oin Ah
e gi[w sin 4f; —«® sin 4f,+ 4=w%? sin 2g, — 4w’ sin 2g,— 6m'«? sin 4h]. (73)
This agrees with the result of a previous paper (viz.: (57) or (79) of  Precession”),
obtained by a different method ; but in that case the inclination of the orbit was zero,
so that = and k were the cosine and sine of half the obliquity, instead of the cosine
and sine of (¢47).
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In the case where the viscosity is small this becomes

% %é— sin 4f[cos (i4+7)—N] . . . . . . . . (74)

It will now be shown that the preceding result (71) for dj/d¢ may be obtained by
means of the principle of conservation of moment of momentum, and by the use of the
results of a previous paper.

It is easily shown that the moment of momentum of orbital motion of the moon and
earth round their common centre of inertia is Cé&/k, and the moment of momentum of
the earth’s rotation is clearly Cn. Also j and ¢ are the inclinations of the two axes of
moment of momentum to the axis of resultant moment of momentum of the system.
Hence

£ sinj=mnsin

.
v

By differentiation of which

] dn .d d
]Echosy— sin v+n cos ¢ : @

TR L)

[g? sin (¢47)+n cos (t47) dt:l cos j— l: cos (t47) —n sin (1-j) dt+ilc (fgf] sin

Now from equation (52) of the paper on “Precession,” the second term on the right-
hand side is zero, and therefore

) dn Co Loond
g%——t sin (¢47)4n cos (14)) é

But by equations (21) and (16) and (29) of the paper on “ Precession” (when = and
« are written for the p, ¢ of that paper)

2
%—_— —%[%m‘s sin 4,4 2w*c* sin 44148 sin 4f, + =% sin 2g,

+ U (w?— k?)? sin 2g + =" sin 2g,]

= [ Tie sin 4f, — w3 (w?—«?) sin df—Lwi” sin 4f,+z'k(m*+ 37 sin 2g,

— L (w®—k?)? sin 2g— 1wk (3w + «?) sin 2g, —3=°«® sin 4h]

Then if we multiply the former of these by sin (i4j) or 2wk, and the latter by
cos (i+j) or ='=«% and add, we get the equation (71), which has already been
established by the method of the disturbing function.

It seemed well to give this method, because it confirms the accuracy of the two long
analytical investigations in the paper on “ Precession” and in the present one.
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§ 12. The method of the disturbing function applied to the motion of the planet.

In the case where there are only two bodies, viz.: the planet and the satellite, the
problem is already solved in the paper on “Precession,” and it is only necessary to
remember that the p and ¢ of that paper are really cos 3(¢+j), sin 3(¢-4), instead of
cos 3¢, sin 32.  This will not be reinvestigated, but we will now consider the case of
two satellites, the nodes of whose orbits revolve with uniform angular velocity on the
ecliptic. The results may be easily extended to the hypothesis of any number of
satellites.

In (18) we have the equations of variation of 7, ¥, x in terms of W. But as the

correction to the precession has not much interest, we will only take the two
equations

IR )
smzdt coszdx, |
dn AW B (£)

which give the rate of change of obliquity and the tidal friction.

In the development of W in § 5, it was assumed that vy, ¢ were zero, and y, x’ did
not appear, because x was left unaccented in the X'-Y'-Z’ functions.

Longitudes were there measured from the autumnal equinox, but here we must
conceive the IV, N’ of previous developments replaced by N—, N'—1; also 2¢+e,
N't+€ must be replaced by 2¢t+e—, 21+ —.

It will not be necessary to redevelop W for the following reasons.

2't+€—1 occurs only in the exponentials, and N'—v/ does not occur there; and

— only occurs in the functions of = and «, and 274 € —y’ does not occur there.
Hence )

AW dW  dW
“d?—g; W . . N . . . . . . . (76)

Again, it will be seen by referring to the remarks made as to y, " in the develop—
ment of W in § 5, that we have the following identities :—

For semi-diurnal terms,
dW, AW, dW, dW, dW, dW,

dy  de Ay df’ Tdy  de

For diurnal terms,

aW, W, dW, dW AW, AW,

dx TR e dx’ T dy TR de r'. N (44
For the fortmghtly term,

dV\iO:_ 0
dy
Also
AW, dW
de” =0, e =0 J

MDCCCLXXX. 5D
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Then making use of (76) and (77), and remembering that cos t=P?—@? sin1=2PQ),
we may write equations (75), thus

(2PQ)n o= L L2 QW 2 PPW - J(P 3@V W, 3 (3P Q) W W]
AW, AW d ..
+(P 2_@2)[ i “d—g"}+ﬁ/(2w) - (78)

&;: _(l(-‘/ WI_WIII_F%WI—%W‘%]-I_WH-FE)*z . . s . s (79)

It is clear that by using these transformations we may put y=y'=0, y=yx' before
differentiation, so that ¢ and x again disappear, and we may use the old development
of W.

The case where Diana and the moon are distinct bodies will be taken first, and it
will now be convenient to make Diana identical with the sun. ‘

In this case after the differentiations are made we are not to put N=2N"and e=¢’.

The only terms, out of which secular changes in 7 and n can arise, are those depend-
ing on the sidereal semi-diurnal and diurnal tides, for all others are periodic with the
longitudes of the two disturbing bodies. Hence the disturbing function is reduced to
Wy and W, Also dWy/dN’ and dW,/dN’ can only contribute periodic terms,
because N—N" is not zero, and by hypothesis the nodes revolve uniformly on the
ecliptic.

Then if we consider that here p’ is not equal p, nor ¢ to g, we see that, as far as is
of present interest,

Wa=2F cos 2f PQY(p*— ") =201 [(p"— ¢’ —2p""]
W, =2G cos g P*QP'—Q)[(p*—¢")—2p"I[(p*— ") —2p"¢"]

Also the equations of variation of ¢ and n are simply

(ePQ)=(P = T+ T

dn dW dW2
At
Then if we put
$=2P'Q(p'—q")—2p qﬂu ¢%)*—2p"q"] “‘:
=1 gint{(1—3 sin® — 3 gin?
| | sin® ¢(1 2smj)(’l ,. sin® j )}' . (80)
Ly=PQ*(P = (p* =) —2p¢*][(p*—q"*)*—2p"q"] |
=1 sin? ¢ cos® (1—5 sin?7) (1 —3% sin?5")
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‘We have

— dn 2rr [2¢F sin 2f4yG sin g j[
di 2'7"7' roeo e (8D
no=— -—~[2¢F sin 2f4-yG sin g cot 4 _Jl

It will be noticed that in (81) 277" has been introduced in the equations instead
of 77/; this is because in the complete solution of the problem these terms are
repeated twice, once for the attraction of the moon on the solar tides, and again for
that of the sun on the lunar tides.

The case where Diana is identical with the moon must now be considered. This
will enable us to find the effects of the moon’s attraction on her own tides, and then
by symmetry those of the sun’s attraction on his tides,

We will begin with the tidal firiction,

By comparison with (65)

d%,[WI—-Wm+ LW, —1IW,]=2®F, sin 2f, 4 2®,F, sin 2f,4T',G, sin g,+T',G, sin g,(82)

Now when we put N=N" (see (43) and (52))

A% .
Wi= de'-'_ —4F sin 2f.wy
Also
W,=2G cos g.w, and %: —2G sin g.w,
Then let

o=2w,=2P'Q[(p*—¢*)—20p°¢* P+ 8 P*Q*(P*+ Q") p*¢*(p*— )"+ 2p* ¢ (PP + @)
=2 PAQH pP— )i+ 8p%%( PP — )P PPQY (P Q4 — PPQ) +-2p'g (PP + AP*Q 4 QF) (83)
and let

=w=P(P = @PL(p — ) —2p
+[P4(P2_ 3Q2)2 + Q%(3P2 — Qz) _2] p2q2(p2 — gz>z + 4P2Q2 (P4 + Qé)péqLi
+ 8_P2Q2(P4 -+ Qé__PzQz)p4q4< ( 8 4)

-And we have

dn_ [2(1) F, sin 2f, 4 2®F sin 2f4-2®,F, sin 2f,4-1',G sin g,

+TGsin g+T,Gysin g, . . (85)

5D 2
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This is only a partial solution, since it only refers to the action of the moon onher
own tides.

If the second satellite, say the sun, be introduced, the action of the sun on the solar
tides may be written down by symmetry, and the elements of the solar (or terrestrial)
orbit may be indicated by the same symbols as before, but with accents.

From (85) and (81) the complete solution may be collected.

In the case of viscosity, and where the viscosity is small, it will be found that the
solution becomes

dn_l gin 4f
=%

{(1— sin® ) (P47 — (1 —% sin® 1) (v* sin? j 77 sin® §)
T SN T ,
-—1-27?/ cos ¢ 08 J—7"%— €08 ¢ 08 j 477’ sin t(1—% sin?j) (1—5sin?y") + . (86)

Ifj and 5" be put equal to zero and £2'/n neglected, this result will be found to agree
with that given in the paper on ““Precession,” § 17, (83).

We will next consider the change of obliquity. :

The combined effect has already been determined in (81), but the separate effects of
the two bodies remain to be found. The terms of different speeds must now be taken
one by one.

Slow semi-diurnal term.
di 7 _QdW, 1 dW,
ndt_ o= P df Tapgav
‘We had before
_EG P gdW, 1 W,
Thdt q p de ' 2pg AN

Now W, is symmetrical with regard to P and p, @ and ¢, and so are its differentials
with regard to € and N'. The solution may be written down by symmetry with the
“slow semi-diurnal” of § 6, by writing P for p and € for ¢ and wvice versd.

Let

Fi=3{L%" 4P*(P2 3Q)pP'¢— 18P PP — Q)p'q* —4Q B2 — Q)p*e"— °¢°} (87)

and

2
n%—%__ZFlFlsiansini O 1)

Sidereal semi-diurnal term.

n‘ﬁ_-_'f (pz )Wy AW
dt 2PQ df dIV’
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Now
aw

daf dN !

2.24F F sin 2f

Therefore

di 1'_2__ Q 2109
zc—i-i_g =2F ¢ n2f|: 2PQ ;ﬁ]

On substitution from (44) and (83) for ® and 4 and simplification, we find that if

=4${ PP (P — Q) (p*— @) =20’ P+ 20 (p*— (PP — QP —2p*¢ (P — Q%) } (89)
then o
nj—j_lg=—z|=Fsinzfsini; L (0

Fast semi-diurnal term.

,n@ LT PdWm_I_ 1 dW,,
dt * g @ dé 2PQ dN’

Since Wy is found from W; by‘ writing @ for P, and —P for @, and —2f, for 2f,
therefore in this case ndi/d¢ is found from its value in the slow semi-diurnal term by
the like changes, and if

=HOPHIQ P~ QP+ PGP QU AP P —3@)p ¢ — Py} (91)

di T

o E:—ZFQFQ sin2fysind. . . . . . . . (92)
Slow dvurnal term,

di 1 [P+3¢: dW1

" g_2PQ{: 2 +de]
dWl 4 2\2, 2 20)2( P2 — (32\2ndHt
g = 2Gysin gy [ PP —3¢°)*plq +18PQ (P*—@Q)p'q

+3 Q%(?)PQJ —_— Q%) p2q6 + 4P2Q698]

d;?: 2G; sin g.T,

Substituting these values and simplifying, it will be found that if

Then —Q*(3P2+ @)} (93)

di % . ..
nﬁ'i_ZGlGlsmglsmz. Coe e e e e (99)
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Sidereal diurnal term.

dv T 1 dW, dW
ﬂ&; q _Z?Q [:( Qg) dN{]
aW, =—2G sin g(LT) and =4p? 22@}G sin

Therefore

“, 7 D@L 2
e 2Gsmg[ 170 ~1r0 Tt pg Q)}]

On substitution from (53) and (84) for I' and ¢ and simplification, we find that if

G=i{(P*— Qz)s[(pz,e_gz)z_ o2 P 2(})2“/@2) [(P*— @)*—12 P2Q*]p* g p*—¢?)?
- — U(P— Q)P AP+ QIpe} (95)
Then
di | T

n&;-i-iz—-QGGsmgsmz. ce o (96)

Fast diurnal term.

@,Tﬂ 1 [3P+ @ dW,  dWy
g 2PQ 2  ded T dN

As the fast semi-diurnal is derived from the slow, so here also ; and if

G,=1 {@' 3P+ Q)p°+2Q° (3P — Q*p'*+9(P*— Q*)’p'q* — 2P (P*— 3Q*)*p¢"
—PY(P43")¢%}  (97)
Then

dv T . ..
ncﬁ+—g~=—2G2G2smggsmz. Coe e e (98)

Fortnightly term.

di 7 1 dWO dw,
at™ g 2PQ aN’

If we take the term in W, which has 2h positive in the exponential, we have
dW —3 o I: 8P2Q2(P2__ Q?;) 2p6q2 _l_ 4[(P2,__ Q2)2__ 2P2Q2:|2p4q4
+ 24P2Q2(P2_ Q2) 2_292g6 + 8P44Q4q8]

—5 2\6/2 — [AP'Q P 16 P QNP — Qg+ A (PP— QP —2 P QT
PP — Y +4 P
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Then if these be added and simplified, it will be found that if

H=i(p'- (" + ) PP +2p°?(P =] . . . . . (99)
Then
ng—:—z;:——2HH sin 2hsins, . . . . . . . (100)

Then collecting results from the seven equations (88, 90-2—4-6-8, 100),

n%:q%; sin 1{2[F,F, sin 2f,—2F F sin 2f— 2, F, sin 2f,4-2G,G, sin g,
—2G0G sin g—2G,Gy sin g,—2HH sin 2h} . (101)

This is only a partial solution, and refers only to the action of the moon on her own
tides ; the part depending on the sun alone may be written down by symmetry.

The various functions of ¢ and j here introduced admit of reduction to the following
forms :—

®=1{L sin* 741 sin?j(4 sin? 1—5 sin* 1) 43 sin* j(1 =5 sin? i+ 34 sm"’ )}
T =1{ sin? ¢— sin* ¢} sin?j(1 —4L sin? ¢+ 5 sint ) - (102)
— sin?j(1—5 sin® ¢4-38 sint7)}
F,+F;=1cosj{1—2 sin?1—% sin? j(1— %sm 1)} h
F, —F, =1 cos i{1—1 sin? {—2 sin? j(1 —& sin? ¢) 4§ sin* j(1 — I sin? ¢) }

Gu+Gu=} con;
—Go=1 cos {144 sin? i—1 sin®j(1 45 sin? 1) — % sint j(1~7I sin? ¢ - (103

1 2=1 J
=1 cos 1{% sin® 1+ sin?j(1 —§ sin® ¢) —F sintj(1 — I sin?¢) }

=1 cos 2{1— sin? 1—7 sin® j(1 —L2 sin? 2) + 5 sint j(1 — % sin® ¢
p 2 J 2

=1 cosj{2 sin? 143 sin® j(1—35 sin®0)} J

®,, ®,, T}, T, are given in equations (67), and ¢ and y in equations (80).

The expressions for F, and [, are found by symmetry with those for 4, and 4F,, by
1nterchangmg ¢ and 7 ; the ﬁrst of equations (62) then corresponds with the second of
(108), and vice versd.

From (103) it follows that

Fi—Fs+4(Gi—Ggo) =# cos i(1 —§ sin?))
and
F4+1G=1 cost(1—% sin%j)
Also
Fi+Fat Gut Got H=1 cos)
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The complete solution of the problem may be collected from the equations (101)
and (81).

In the case of the viscosity of the-earth, and when the viscosity is small, we easily
find the complete solution to be

di__sin 4f

7 q

Co NP oo 20 Lo
+1 sin ¢ cos 1{1-2(1 —34 sin?j) 471 —32 sin®y") — = ~7°seci cos

2.0 . " , o g . o v '
——;?T'zseczcow —77(1—%s1n2j)(1—%81n9‘y)} .. (104)

This result agrees with that given in (83) of “ Precession,” when the squares of
7 and j’ are neglected, and when £2'/n is also neglected.

The preceding method of finding the tidal friction and change of obliquity is no
doubt somewhat artificial, but as the principal object of the present paper is to discuss
the secular changes in the elements of the satellite’s orbit, it did not seem worth while
to develop the disturbing function in such a form as would make it applicable both to
the satellite and the planet ; it seemed preferable to develop it for the satellite and
then to adapt it for the case of the perturbation of the planet.

In long analytical investigations it is difficult to avoid mistakes; it may therefore
give the reader confidence in the correctness of the results and process if I state that
I have worked out the preceding values of di/d¢ and dn/dt independently, by means of
the determination of the disturbing couples 3, J¥l, §3. That investigation separated
itself from the present one at the point where the products of the X’-Y’-Z’ functions
and ¥-3)-Z functions are formed, for products of the form Y'Z’'x ¥3) had there to be
found. From this early stage the two processes are quite independent, and the identity
of the results is confirmatory of both. Moreover, the investigation here presented
reposes on the values found for dj/dt and d€/dt, hence the correctness of the result of
the first problem here treated was also confirmed.

I11.

THE PROPER PLANES OF THE SATELLITE, AND OF THE PLANET, AND THEIR
SECULAR CHANGES.

§ 13. On the motion of a satellite moving about a rigid oblate spheroidal planet, and
perturbed by another satellite.

The present problem is to determine the joint effects of the perturbing influence of
the sun, and of the earth’s oblateness upon the motion of the moon’s nodes, and upon
the inclination of the orbit to the ecliptic; and also to determine the effects on the
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obliquity of the ecliptic and on the earth’s precession. In the present configuration of
the three bodies the problem presents but little difficulty, because the influence of
oblateness on the moon’s motion is very small compared with the perturbation due to
the sun; on the other hand, in the case of Jupiter, the influence of oblateness is more
important than that of solar perturbation. In each of these special cases there is an
appropriate approximation which leads to the result. In the present problem we have,
however, to obtain a solution, which shall be applicable to the preponderance of either
perturbing cause, because we shall have to trace, in retrospect, the evanescence of the
solar influence, and the increase of the influence of oblateness.

The lunar orbit will be taken as circular, and the earth or planet as homogeneous
and of ellipticity ¢, so that the equation to its surface is

p=a{l+e(F—cos® )}

The problem will be treated by the method of the disturbing function, and the
method will be applied so as to give the perturbations both of the moon and earth.

First consider only the influence of oblateness.

Let p, 0 be the coordinates of the moon, so that p=c and cos #=M;. Then in the
formula (17) § 2, r=c and Z—=B(%—M32), so that the disturbing function

=7e(3—M;?)

This function, when suitably developed, will give the perturbation of the moon’s
motion due to oblateness, and the lunar precession and nutation of the earth.

Then by (21) we have
My=sin ¢ [p?sin ({4 N)—q¢?sin (I—N)]+sinj cos i sin I.

Where [ is the moon’s longitude measured from the node, and N is the longitude of
the ascending node of the lunar orbit measured from the descending node of the
equator.

Then as we are only going to find secular inequalities, we may, in developing the
disturbing function, drop out terms involving I; also we must write N—y for N,
because we cannot now take the autumnal equinox as fixed.

Then omitting all terms which involve /,

Mg2=sin? i [ $(p*+q*) —p%® cos 2(N—) ]+% sin?/ cos? s
+sinj sin ¢ cos 1| p*—q%] cos (N —1)
Since p=cos %J, ¢g=sin £, we have

prgi=1—} sintj, pgP=1 sin®j, pP—gi=cos
MDCCOLXXX. ' 5 E
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and
M;*=1 sin? ¢(1 —3 sin? j) 44 sin® j(1 —sin? 2)
+1 sin 2¢ sin 2/ cos (N—) —1 sin? ¢ sin? j cos 2(N—1)
Now
$(sin? ¢4-sin®j) — £ sin? ¢ sin®j — 3= —H(1—$§ sin®¢) (1 — 3 sin?))
Wherefore

W=re{3(1—% sin®7)(1—% sin®j) —1 sin 2¢ sin 2j cos (N—1)
=44 sin? 4 sin? j cos 2(N—4)} (105)
This is the disturbing function.
Before applying it, we will assume that ¢ and j are sufficiently small to permit us to
neglect sin® ¢ sin?j compared with unity.
Then
(1—3 sin®4) (1 —$ sin®j)=+5+1—1 sin® ¢—1 sin? j4-sin® ¢ sin® j — 4 sin® 7 sin?/
~+1 cos 2¢ cos 2/ — 1 sin® ¢ sin?j
Hence, when we neglect the terms in sin? ¢ sin?j
W=1re{4+cos 2¢ cos 2j—sin 20 sin 2 cos (N—¢)} . . . . (106)
Then since this disturbing function does not involve the epoch or y, we have by
(13), (14), and (18)

_&g n 4 _ W gsin M—M —n smz‘ﬁ W n s'nidib—c—ZE
LT = s = dj’ at W T
Thus as far as concerns the influence of the oblateness on the moon, and the reaction
of the moon on the earth,

]i—; sin j% = —17¢ sin 20 8in 2j sin (N —1)) h
£ . AN
2 8inj—r= —Lrg{cos 2¢ sin 2j+4-sin 24 cos 2/ cos (N —)}
i -, . (107)
nsin i = 4¢sin 2¢ sin 2j sin (N —1)
o L
7 8in t—-=—Jre{sin 2¢ cos 2+ cos 20 sin 2j cos (N—1)} |

dt

If there be no other disturbing body, and if we refer the motion to the invariable
plane of the system, we must always have N=1.
In tihis case the first and third of (107) become

dj__di

T T

and the second and fourth become
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E . AN oy
g S0y r=nsing o= —47e sin 2(v4y)

But €/k is proportional to the moment of momentum of the orbital motion, and n is
proportional to the moment of momentum of the earth’s rotation, and so by the defini-
tion of the invariable plane

%sinj:nsini. Coe e oo (108)

‘Wherefore %:%-f, and it follows that the two nodes remain coincident. This
result is obviously correct.
In the present case, however, there is another disturbing body, and we must now

consider

The perturbing influence of the sun.

Accented symbols will here refer to the elements of the solar orbit.

We might of course form the disturbing function, but it is simpler to accept the
known results of lunar theory; these are that the inclination of the lunar orbit to
the ecliptic remains constant, whilst the nodes regrede with an angular velocity

A :
%(—1> [1 -—%——::lﬂ Cos J.
s _1spmy e 1T - ; o 1T for
Now £ o nN=54En? x =% In our notation. Hence I shall write & , for

i
formula for numerical calculation.

For the solar precession and nutation we may obtain the results from (107) by
putting =0, and 7’ for r.

Thus for the solar effects we have

" 9 7
%<Q> [1—%—%} 22, although if necessary (in Part IV.) I shall use the more accurate

i, )
dat
dN 1 T .
=k 5008y
. f (109)*
L= o
dt
oo .o
) SIHZ%:—%’T,B sin 2¢

* The following seems worthy of remark. By the last of (109) we have dy/df== —1'¢ cos ¢/t
In this formula ¢ is the precessional constant, because the earth is treated as homogeneous.
The full expression for the precessional constant is (2C—A~B)/2C, where A, B, C are the three prin-
cipal moments of inertia.
Now if we regard the earth and moon as being two particles rotating with an angular velocity £2 abont
b E 2
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Then when the system is perturbed both by the oblateness of the earth and by the
sun, we have from (107) and (109),

%:sm J Zl_t = —17€ sin 2¢ sin 2 sin (N —1)
3

LSy = —17¢{cos 2¢ sin 2j+ sin 2¢ cos 2j cos (N—y)} —2 i ;5; sin 25
5 | > (110)
nsine o= 47t sin 20 sin 2j sin (N—1)

nsm - = — L {sin 27 cos 2j+ cos 2¢ sin 2f cos (N—)} —37¢ sin 21

./

The second pair of equations is derivable from the first by writing ¢ for j and j for z;
N for s and  for N; n for €/k; n for 2; and 3¢ for £ in the term in 7",
The first pair of equations may be put into the form

cos 2 glz:‘])— ETB sin 27 cos j cos 2j sin (N —1)
g Tk 07 oom ¢ i Bt si %5 oo o0 24 aos (N of
sin Zj - -=— grz{cos i cosJ sin 2/ 4 sin 2¢ cos 7 cos 27 cos (N — )}—3 0 sin 2j cos j
Now let :
y=1Lsin 2/ sin N, n=1% sin 27 sin (111)
z=1%sin 2j cos NV, C:—% sin 2icos [
Therefore
dz . .
277= cos N cos 2 —+= (‘7) smNsty%V
rk[cos J cos 2j.2n-+ cos 2¢ cos . 29]-!— cos 729
or
de__ (kre Ny BT e o 27
= ( £ cos 2u cosy—{-gﬂ cosy) Y+ £ cos ) cos 2.m
Again
d
2% = sin IV cos 2 X« J)+ cos N sin 2§ — g
dt dt
——-[cosy cos 27.2¢+ cos 2¢ cos 5.2z ]— 2” cosy 2%

their common centre of inertia, then the three principal moments of imertia of the system are
Mmc?|(M+m), Mmc*/(M+m), 0, and therefore the precessional constant of the system is §. Thus the
formula for dN/dt is precisely analogous to that for dy-/dt, each of them being equal to 7' X prec. const.
X cos inclin. =+ rotation.
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Now let

And we have

/

and by symmetry from the two latter of (110)
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¥ cos 2 o8 J +?}5;—2 cosy> PR cos j cos 27.¢

£
ke 1 7
= 3 =397
. (112)
ho— Tt .
L 27 J
a, cos 21 cos J+a, cos )y, cosj cos 27. )
1 J T Qg CO8J )Yy COSJ 71 |
: (113)
— (&, cos 2t cos j+a, cos j)z —a, cosj cos 27.¢
1 J TGy CO8 J 1 CO8j
¢ . . » )
= (b, cos 2/ cos ¢+ b, cos 2)n-+D, cos ¢ cos 21.y
L (114)

= — (b, cos % cos 14D, cos ©){ —b, cos 7 cos 2.z |

These four simultaneous differential equations have to be solved.

The o’s and b’s are constant, and if it were not for the cosines on the right the
equations would be linear and easily soluble.

It has already been assumed that 7 and j are not very large, hence it would require
large variations of ¢ and j to make considerable variations in the coefficients, I shall
therefore substitute for 7 and j, as they occur explicitly, mean values 4, and j,; and
this procedure will be justifiable unless it be found subsequently that ¢ and j vary

largely.

Then let

a==a, cos 21, cos jy+d, cos j,  B==b; cos 2j, cos ty+Db, cos i,

a=a, cos j, cos 2,

. . .. (115
b="b, cos 7, cos 2, } (115)

(Hereafter ¢ and j will be treated as small and the cosines as unity.)

Then

%= ay+an
%:— az—a(
f—zzc— Bn+by
Z—?'——-Bl bz

7

L 6§ 1))
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These equations suggest the solutions

2z=3L cos (kt-+m) {=3L cos (kt+m)
y=3L sin (kt-tm) n=3L’sin (xt+m)

Then substituting in (116), we must have

—Lk=oalL+al’; —L'x=BL +bL
‘Wherefore
b Kto b

Lz— a —_/c-l-B
and

(k+a)(k+B)—ab=0 or K’ «(e+B)+4af—ab=0.

This quadratic equation has two real roots (k; and «, suppose), because
(24 B)*—4(aB—ab)=(a—B)*-4ab is essentially positive. '

Then let
i+ = —(2+B) } (117)
Ky —iy=— {(a—B)*+4ab}!
And the solution is
4 sin 2 cos N=2=1L, cos (kt+m,)+ L, cos (ke +m,) )
L sin 2 sin N=y=L, sin (k,t+m,)~+ Ly sin (k¢ +1m,)
1 sin 20 cos p ==L,  cos (k;t+m;)+ L, cos (kyt-+my) (18)
1 sin 2isin ¥ =n=1L,"sin (k;¢+m;)+ L, sin (ryt+m,)
where
Ll _mte b L) kda b
L~ a k4B’ L, a T ktf

From these equations we have

1 sin? 2/=L 24 L2421, L, cos [ (k;— x,)t+m, —1m, |
Lsin® 2i=L,"+ L)+ 2L/ L, cos [ (k;—Ky)t4m; —my |

From this we see that sin 2 oscillates between 2(L,+L,) and 2(L,« L), and sin 2¢
between 2(L,/+ L) and 2(L, - L,).

Let us change the constants introduced by integration, and write L,=4 sin 2j,
L) =1% sin 24,

Then our solution is
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sin 2j cos N=sin 2j, cos (x;t+m,)— sm 24, cos (rgf+my) )
sin 2 sin N=sin 2j, sin (x;f+4m,)— e —— sin 2¢, sin (ky¢ +m,)
. & L. (119)
sin 24 cos § = — " sin 2, cos (k¢ ~+m,)+ sin 27, €08 (Kot +1m,)
sin 2¢ sin = o sin (k8 4m;) -+ sin 24, sin (k,f+m,) j

From this it follows that

sin 24 sin 2j cos (N—y)=—"1 2 in® Yo - sin® 24,
+ (1 +4 +a> sin 24, sin 2j, cos [ (k, — ko)t -+m; —my,]
Ky+o
sin 21 sin 2f sin (N—y)= (1—-: ) sin 27, sin 27, sin [ (k; = k)t +m; —m,]
Ky
Now
(k1) (kg +0) = — (k,+2) (k, +B) = —
ket iyt 2e=a—f

Therefore

sin 27 sin 2f cos (N—y)= - {a sin? 2¢,—Db sin® 2j, WI
. 2

— (=) sin 21, sin 2j, cos [ (k,— )t +m; —m, ]} (120)

sin 2¢ sin 2j sin (N —y)= —f::z sin 24, sin 27, sin [ (k; — ky) t+m; —11, | J
2

From (120) it is clear that the nodes of the lunar orbit will oscillate about the
“equinoctial line, if

a sin? 2¢,— b sin? 2j, be greater than (e— ) sin 2¢, sin 2j,,

but will rotate (although not uniformly) if the former be less than the latter.
With the present configuration of the earth and moon

a sin? 24,~b sin® 2j, is very small compared with («—p) sin 24, sin 2j,,
and the nodes of the lunar orbit revolve Very' nearly uniformly on the ecliptic; also

the inclination of the orbit varies very slightly, as the nodes revolve.
In the investigation in Part II. the secular rate of change in the inclination of the
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lunar orbit has been found, on the assumption that the nodes of the lunar orbit rotate
uniformly.

It is intended to trace the effects of tidal friction on the earth and moon retro-
spectively. In the course of the solution the importance of the solar perturbation of
the moon, relatively to the influence of the earth’s oblateness, will wane ; the nodes
will cease to revolve uniformly, and the inclination of the lunar orbit and of the equator
to the ecliptic will be subject to nutation. The differential equations of Part II. will
then cease to be applicable, and new ones will have to be found.

The problem is one of such complication, that I have thought it advisable only to
attempt to obtain a solution on the hypothesis of the smallness both of the obliquity
and of the inclination of the orbit to the plane of reference or the ecliptic. It seems
best however to give the preceding investigation, although it is more accurate than

the solution subsequently used.*

The first step towards this further consideration is to obtain a clear idea of the
nature of the motions represented by the analytical solutions (118) or (119) of the
present problem. '

Assuming then ¢ and j to be small, we have from (112) and (115)

a=a,+ay a=a;, B=b+0b, b=b, . . . . . . (121)

jcos N=I, cos (kt—4m,)+Ly cos (kyt+m,) )
Jsin N=L, sin (kjt-+m;)+ L, sin (kyt+m,)

veos Yy =L, cos (kyt+m,) 4Ly cos (kyt +my) I
tsin ¢ =L, sin (kf4m;) 4Ly sin (kyt+m,) J

(122)

Take a set of rectangular axes; let the axis of 2’ pass through the fixed point in the
ecliptic from which longitudes are measured, let the axis of 2’ be drawn perpendicular
to the ecliptic northwards, and let the rotation from a” to 3’ be positive, and therefore
consentaneous with the moon’s orbital motion.

Then N is the longitude of the ascending node of the lunar orbit, and therefore the
direction cosines of the normal to the lunar orbit drawn northwards are,

sin § cos (N —3m), sin j sin (N—4), cos j ; or since j is small, j sin N, —j cos IV, 1.

And ¢ is the longitude of the descending node of the equator, and therefore the
direction cosines of the earth’s axis, drawn northwards are,

sin ¢ cos (Y+43m), sin ¢ sin (Y-4357), cos ¢; or since ¢ 1s small, —7 sin 4, 7 cos ¥, 1

Now draw a sphere of unit radius, with the origin as centre ; draw a tangent plane

* Sce the foot-note to § 18 for a comparison of these results with those ordinarily given.
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to it at the point where the axis of 2’ meets the sphere, and project on this plane the
poles of the lunar orbit and of the earth. We here in fact map the motion of the two
poles on a tangent plane to the celestial sphere. Let &', 4" be a pair of axes in this
plane parallel to our previous «, %" ; and let &, %" be the coordinates of the pole of the
lunar orbit, and &, n" be the coordinates of the earth’s pole. Then

#=jsin N,y'=—jcos N; =—c¢siny, y’=tcosyp. . . . (128)

Let @, y, & n be the coordinates of these same points referred to another pair of
rectangular axes in this plane, inclined at an angle ¢ to the axes o/, ¥/.

Then
x= o'cosp+y sind , = & cosdp+n sin ¢
y=—x'sin ¢+9 cos d , n=—¢& sin ¢+’ cos ¢

From (123) and (118) we have therefore

o= Ly sin(kt+m—¢)+L, sin (kyf +my—) 1
y=—L, cos(rkt+m)—h)—L, cos (kyt+my—¢) L
E=—L) sin(k;t+m;— ) — L, sin (kyt +m,—p)

n= L/ cos(k;t+m;— )+ Ly cos (ket+my—eh) J

Now suppose the new axes to rotate with an angular velocity «, and that
b=k,t+m,.
Then

=L, sin [ (k; — k)t +m; —my, | jl
Y~+Ly=—L, cos [ (k,— ry)t +m, —m, |
§=—L, sin [ (k— ry)t+m; —my ]
n—Ly/=L cos [(x;— )t +m) —m,]

(124)

These four equations represent that each pole describes a circle, relatively to the
rotating axes, with a negative angular velocity (because xk;,—x, is negative). The
centres of the circles are on the axis of 4. The ratio

distance of centre of terrestrial circle  Ly"  x3+a b
distance of centre of lunar circle ~ —Z,” a &+

(125)

the distances being measured from the pole of the ecliptic. And the ratio
MDCCCLXXX. 5F
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radius of terrestrial circle  Z, K ta b

radius of lunar circle  Z; a Kk +pB

’

(126)

According to the definitions adopted in (117) of «; and ky, (k,+a)/a is negative and
(ko+a)/a 1s positive ; hence L, has the same sign as L/, and L, has the opposite sign
from L;/. When ¢t=—(m;—m,)/(x,—«,), we have

a=0, y=(—Lo)— 1Ly, §=0, n=L/+ L/

Fig. 6.

In fig. 6 let Ox, Oy be the rotating axes, which revolve with a negative rotation
equal to k,, which is negative. Let M be the centre of the lunar circle, and Q of the
terrestrial circle. Then we see that L and P must be simultaneous positions of the
two poles, which revolve round their respective circles with an angular velocity k,—«,,
in the direction of the arrows.

M and Q are the poles of two planes, which may be appropriately called the proper
planes of the moon and the earth. These proper planes are inclined at a constant
angle to one another and to the ecliptic, and have a common node on the ecliptic, and «
uniform slow negative precession relatively to the ecliptic.

The lunar orbit and the equator are inclined at constant angles to the lunar and
terrestrial proper planes respectively, and the nodes of the orbit, and of the equator
regrede uniformly on the respective proper planes.

In the ‘Mécanique Céleste’ (livre vii.,, chap. 2, sec. 20) LAPLACE refers to the
proper plane of the lunar orbit, but the corresponding inequality of the earth is
ordinarily referred to as the 19-yearly nutation. It will be proved later, that the
above results are identical with those ordinarily given.

Suppose then that
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T=the inclination of the earth’s proper plane to the ecliptic )
J=the inclination of the lunar orbit to its proper plane
I,=the inclination of the equator to the earth’s proper plane

J,=the inclination of the moon’s proper plane to the ecliptic
Then - . (127)
J=L,I1=L), 1=L/, J=—

and by (125-6)

—_fate DT — _tB
I=—"""J=— K1+BJ, J= W‘L_ —°1 |

Thus T and J are the two constants introduced in the integration of the simul-
taneous differential equations (116).

It is interesting to examine the physical meaning of these results, and to show how
the solution degrades into the two limiting cases, viz.: where the planet is spherical,
and where the sun’s influence is non-existent.

Let w be the speed of motion of the nodes, when the ellipticity of the planet is zero.

Let | be the purely lunar precession, or the precession when the solar influence
is nil.

Let M be the ratio of the moment of momentum of the earth’s rotation to that of
the orbital motion of the two bodies round their common centre of inertia.

Then

Then by (121) and (115) we have

s=ml+n, a=ml B=I+"% b=l

Iirst suppose that W is large compared with 1.

This is the case at present with the earth and moon, because the speed of motion
of the moon’s nodes is very great compared with the speed of the purely lunar
precession.

Then a, 8, b are small compared with a.
Therefore by (117)

kK—ky=—0o+0, K+, =—a—L
and

=0, ky=—P3

5 ¥ 2



768 MR. G. H. DARWIN ON THE SECULAR CHANGES IN

Therefore

L b _ ! _! approximately
atfoemf g @em-TE

a

a |8 .
=m approximately

/c2+a_a—B
Ky = __7'-!-77:2, Kky— Kk, =MW approximately

And by (127) :
=17, J=ml1
n n

Now we have shown above that —k, is the common angular velocity of the pair of
proper planes, and the above results show that it is in fact the luni-solar precession.

ky—k, is the angular velocity of the two nodes on their proper planes, and it is
nearly equal to 1.

The ratio of the amplitude of the 19-yearly nutation to the inclination of the lunar
orbit is [/n.

The ratio of the inclination of the lunar proper plane to the obliquity of the ecliptic
is mi/n. .

In this case, therefore, the lunar proper plane is inclined at a small angle to the
ecliptic, and if the earth were spherical would be identical with the ecliptic.

Secondly, suppose that W s small compared with 1.

Then @ fortior: I%E is small compared with [.  Hence we may put S=b.

Therefore
I —b
Ky— 1, =1/ (. — B)2+ 4ab=a+b+3:1t, nearly
m—1
_(m+1)[+mn
Kot ;= — (W4 1)[—n
m
=gy = —mH)l—gran
mtB_, 1 n. _m_l< 1w
b~ m4+1 1’ a m m-+1 I)
Therefore

1 1 o . 1 n
I/—a<1—m 1‘>J’ J’_<1—_—m'+1 1>I
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From the last of these,

— kK, 18 the precession of the system of proper planes, and the above results show that
the solar precession of the planet and satellite together, considered as one system, is
one (M~4-1)™ of the angular velocity which the nodes of the satellite would have, if the
planet were spherical.

Kky—x; is the lunar precession of the earth which goes on within the system, and it
is approximately the same as though the sun did not exist. (Compare the second and
fourth of (107) with N=1, and use (108)).

It also appears that the lunar proper plane is inclined to the planet’s proper plane
at a small angle the ratio of which to the inclination of the earth’s proper plane to the
ecliptic is equal to one (M+1)™" part of n/l.

If wand [ are of approximately equal speeds the proper plane of the moon will
neither be very near the ecliptic, nor very near the earth’s proper plane. The results
do not then appear to be reducible to very simple forms ; nor are the angular velocities
Kk, and k,—k, so0 easily intelligible, each of them being a sort of compound precession.

If the solar influence were to wane, M and Q, the poles of the proper planes, would
approach one another, and ultimately become identical. The two planes would have
then become the invariable plane of the system; and the two circles would be
concentric and their radii would be inversely proportional to the two moments of
momentum (whose ratio is ). ‘ -

Now in the problem which is to be here considered the solar influence will in effect
wane, because the effect of tidal friction is, in retrospect, to bring the moon nearer
and nearer to the earth, and to increase the ellipticity of the earth’s figure ; hence the
relative importance of the solar influence diminishes.

We now see that the problem to be solved is ta trace these proper planes, from
their present condition when one is Vnearly identical with the ecliptic and the other is
the mean equator, backwards until they are both sensibly coincident with the equator.

We also see that the present angular velocity of the moon’s nodes on the ecliptic is
analogous to and continuous with the purely lunar precession on the invariable plane
of the moon-earth system ; and that the present luni-solar precession is analogous to
and continuous with a slow precessional motion of the same invariable plane.

Analytically the problem is to trace the secular changes in the constants of integra-
tion, when a, a, B, b, instead of being constant, are slowly variable under the influence
of tidal friction, and when certain other small terms, also due to tides, are added to
the differential equations of motion.
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§ 14. On the small terms in the equations of motion due directly to tidal friction.

The first step is the formation of the disturbing function. '

As we shall want to apply the function both to the case of the earth and to that of
the moon, it will be necessary to measure longitudes from a fixed point in the ecliptic;
also we must distinguish between the longitude of the equinox and the angle x, as they
enter in the two capacities (viz.: in the X'Y" and ¥3D functions) ; thus the N and N’
of previous developments must become N—y, N'—y/; ¢, € must become e—s, € —i/';
and 2(x-x’) must be introduced in the arguments of the trigonometrica,l terms in the
semi-diurnal terms, and y—x" in the diurnal ones.

The disturbing function must be developed so that it may be applicable to the cases
either where Diana, the tide-raiser, is or is not identical with the moon ; but as we are
only going to consider secular inequalities, all those terms which depend on the
longitudes of Diana or the moon may be dropped,

In the previous development of Part I1. we had terms whose arguments involved
e—¢'; in the present case this ought to be written (2t-+e—y)—(Rt+€—y), for
which it is, in fact, only an abbreviation.

Now a term involving this expression can only give rise to secular inequalities, in the
case where Diana is identical with the moon ; and as we shall never want to differentiate
the disturbing function with regard to £’, we may in the present development drop
the 2t and Q't.

Having made these preliminary explanations, we shall be able to use previous results
for the development of the disturbing function. The work will be much abridged by
the treatment of ¢, 7, ¢/, 7 as small, : v

Unaccented symbols refer to the elements of the orbit of the tide-raiser Diana, or
(in the ease of 7, x, ¥) to the earth as a tidally distorted body ; accented symbols refer
to the elements of the orbit of the perturbed satellite, or to the earth as a body whose
rotation is perturbed,

Then since 7, ¢’ and /, j* are to be treated as small, (22) becomes

g} =Pp—Qqe* ¥ N =1—1P—1?—Lijex @9
v "y (128)
K:}=Qp—l—-Pqei(N-\P)_—_%Z_l_%jei(N—\p) |

The same quantities when accented are equal to the same quantities when 4,7, N, ¢ are
accented.

Then referring to the development in § 5 of the disturbing function, we see that, for
the same reasons as before, we need only consider products of terms of the same kind
in the sets of products of the type X'Y'X¥3). Hence the disturbing function W is
the sum of the three expressions (37-9) multiplied by 77’/g. Now since we only wish
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to develop the expression as far as the squares of 7 and j, we may at once drop out all
those terms in these expressions, in which « occurs raised to a higher power than the
second. This at once relieves us of the sidereal and fast semi-diurnal terms, the fast
diurnal and the true fortnightly term. We are, however, left with one part of
33 —Z7)(3—Z?), which is independent of the moon’s longitude and of the earth’s
rotation ; this part represents the permanent increase of ellipticity of the earth, due
to Diana’s attraction, and to that part of the tidal action which depends on the
longitude of the nodes, in which the tides are assumed to have their equilibrium value.
I shall refer to it as the permanent tide.

Then as before, it will be convenient to consider the constituent parts of the dis-
turbing function separately, and to indicate the several parts of W by suffixes as in
§ 5 and elsewhere ; as above explained, we need only consider W;, W,, W,, and W,

Sema-diurnal term.

From (37) we have

4
T , . ,
W I /E = ;}—[F 1w4w'4eg<6 —0-2f, “+ Fljc?:‘l‘m'*(ﬁ"Q(e ””J’%]

To the indices of these exponentials we must add +2(x—x’), and for § write e—1,
and for ¢, € —1/.
Then by (128)

ot =1—12—1j° ——z]e“"“"’)
e ot VA (i
Hence
T = AR (=P P3P ) eos [+ 2(¢— 9 —2(¢ =) 21
—ij cos [2(x—X) +2(€ —€) —2(¢' =)+ (N —y) —21}]
i cos [2(x—X )+ 2 ——2(W ) — (V' —§)—26]} . . (129)

Slow diurnal term. .

From (38) we have

'T’T . Y -
____Gl[m. K,m’?» '62(5’ 6) g‘|+m. K‘m‘3 /o= U6 9)+g"}

T

To the indices of the exponentials we must add +(x—x'); =°, =" may be obviously
put equal to unity, and by (128)

KK =1[l?, +Z]6(N \ll)_'_ 7:7’ ~(N’*W')+jj’ (N=N)~ (W~ 4")]
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Hence

W, /T =4 i cos [(x—x)+2(¢ ——2(F =) —g1]
7 cos [(x=X)+2(¢ =)= 24 =)+ (V=) ]
7 cos [(x—x) +2(¢ =9 =20 —9) — (¥’ —#)—g1]
i cos [(x—x)+2( = =20 =)+ =N)—(h—¥)=g]} - (130)

Sidereal diwrnal term.

From (38) we have

W, ot = G[m{f(wf - K_ls)i_Z?_’Kl(w/‘ti_j’/ — I’(’If,)eég +wr(ws— KKk k' (w'w — K'k')es]

g

To the indices of the exponentials must be added 4+ (x—x). @, = may be treated
as unity. Hence the expression becomes G [kr/ex "84 k'e” % ¥*¢] and

W, /=16 (i cos (x—X'—g)
4 cos [ (x—X)— (N —¥)—¢]
i cos [(x—x)+(V'—)—g]
i cos [(x=X)=(N=N')+ (=) =g} . . . (131)

Permanent term.

From (39) we have
W, /”; =§(4—2mmn)(}— 20w K x)
=¢—kk—«'k’ to our degree of approximation.

Now
= 4P ) =P 25 cos (V=)

Hence

O/T; =3—1(P+72429 cos (N—y)) —1(2 452+ 2177 cos (N'—/)) . (132)
W, and W, are the only terms in W which can contribute anything to the secular
inequalities, unless Diana and the satellite are identical ; for all the other terms involve
e—¢, and will therefore be periodic however differentiated, unless e=¢'.
We now have to differentiate W with respect to ¢/, ¥, ¥, 5, €, N. The results
will then have to be applied in the following cases.
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Forthemoon: (i.) When the tide-raiser is the moon.
(ii.) When the tide-raiser is the sun.

For the earth: (iii.) When the tide-raiser is the moon, and the disturber the moon.
(iv.) When the tide-raiser is the sun, and the disturber the sun.
(v.) When the tide-raiser is the moon, and the disturber the sun.
(vi.) When the tide-raiser is the sun, and the disturber the moon.

The sum of the values derived from the differentiations, according to these several
hypotheses, will be the complete values to be used in the differential equations (13),
(14) and (18) for dj/dt, dN/d¢, di/dt, dy/dt.

A little preliminary consideration will show that the labour of making these
differentiations may be cons1derab1y abridged.

In the present case ¢ and j are small, and the equations (110) which glve the

position of the two proper planes, and the inclinations of the orbit and equator
thereto, become

§_____ .. _ ~
P fas 782 sin (N —1) 4

. AN
‘]E;Sln_]—d?_ (B—I—g:a%) — 781 cos (N —1)

s N (E5)
(] o .

n, =Tt sin (N—1)

Ly e

nsin i = —(re+7'e)i—1gj cos (N—y) |

We are now going to find certain additional terms, depending on frictional tides, to
be added to these four equations. These terms will all involve 7%, 7%, or 77" in their
coefficients, and will therefore be small compared with those in (133). If these small
terms are of the same types as the terms in (188), they may be dropped ; because the
only effect of them would be to produce a very small and negligeable alteration in the
position of the two proper planes.*

In consequence .of this principle, we may entirely drop W, from our disturbing
function, for W only gives rise to a small permanent alteration of oblateness, and
therefore can only slightly modify the positions of the proper planes.

Analytically the same result may be obtained, by observing that W in (132) has
the same form as W in (105), when ¢ and j are treated as small.

* For example, we should find the following terms in 7§ sin § C—g—v, viz, :—

—%57 E——*z cos (N—vy) sin? g~ q + 5(j 47 cos (N—1)) [sin® 2f; —sin? g; —sin? g ]2

which may be all coupled up with those in the second of (133).
If the viscosity be small, so that the angles of lagging are small, it will be found that all the terms of
this kind vanish in all four equations, excepting the first of those just written down, viz.: —1jr'/q.
MDCCCLXXX. ’ 5 ¢
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In each case, after differentiation, the transition will be made to the case of viscosity
of the planet, and the proper terms will be dropped out, without further comment.

Iirst take the perturbations of the moon.

For this purpose we have to find dW/dj” and dW /sinj” dN'4tan % 5" dW /de" or
AW [J'dN'+ %5 d W /de.

By the above principle, in ﬁndmg dW/ob we may drop terms involving
J and i cos (V—1q), and in finding olW/]’dN ‘+47" dW/dée, we may drop terms involv-
ing ¢ sin (N —1).

We may now suppose y=x, y=1/. A

Take the case (i.), where the tide-raiser is the moon. Then as the perturbed body
is also the moon, after differentiation we may drop the accents to all the symbols.

From (129)

ddjvl/zg—_ 5F {—7j cos 2f,—1 cos (N—y4-2f))}
=4esin (N—y)sindaf, . . . . . . . . . . (1384)
From (130)
aw, [

4/ g

=4G, {1 cos (N —+g1)+J cos g}
=—4fisin (N—y)sin2g, . . . . . . . . (135)

From (131) and symmetry with (135)

aw, /_

dj/ tisin (N—y)sin2g . . . . . . . (136)

Adding these three (134—6) together, we have for the whole effect of the lunar tides
on the moon

/22
%}Y—/%-—ﬂ sin (N—1)[sin 4f, —sin 2+ sin 2g] . . . . (137)

Now take the case (ii.) where the tide-raiser is the sun.
Here we need only consider Wy, but although we may put x=y', y=1y, 1=1, we
must not put j=j’, N=2N’, because the tide-raiser is distinct from the moon.
From (131)
dW ’ . ?
=G cos (V' =/ —g)+j cos (N—N +g)}
Here accented symbols refer to the moon (as perturbed), and unaccented to the sun
(as tide-raiser). As we refer the motion to the ecliptic j=0, and the last term
disappears. Also we want accented symbols to refer to the sun and unaccented to
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refer to the moon, therefore make r and 7’ interchange their meanings, and drop the
accents to N’ and ¢. Thus as far as important
aw, /’r”r 1. .
—F*)—=Lysin (N—¢)sin2g . . . . . . . (138
d:] / g 4 ( p) g ( )

This gives the whole effect of the solar tides on the moon.
Then collecting results from (187-8), we have by (14)

gsm‘y—d—tj——z sin (N —1) [g (sin 4f, —sin 2g,+sin 2g)+E sin ZgJ (139)

This gives the required additional terms due to bodily tides in the equation for
dN/dt, viz.: the second of (133).

If the viscosity be small

) ) 140
sin 2g =1sin 4f (140)

© sin 4f, —sin 2g,+4-sin 2g= sin 4f}

Next take the secular change of wnclination of the lunar orbit.

For this purpose we have to find dW/j"dN'+4+45°dW/de/, and may drop terms in
¢ sin (N—1).
First take the case (i.), where the tide-raiser is the moon.

From (129)
;, (f_g\;/’r 1F, vsin (N—y4-2f))=1%icos (N—y)sin 4f, . . . (141)
%J’%/%_QFM sin 2f) =1jsin4df,. . . . . . . (142

From (130)

1aw, |7 _ 1G5 sin (N .. RV .

5T e = A0t sin (V=g sin ] = — (o cos (V=) s 2, (14)
2 .
oY) d;v / = 0 to present order of approximation . . . . . . . . (144)

From (131)

1dW, /r .. . cyo .
7 dN’//g —4G{isin (N—y—g)—y sin g} =1(j+7 cos (N—y)) sin 2g . (145)
, AW,
37 X /;—0 absolutely. . . . . . . . . . . . . . . . . (146)

[
]
o
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Collecting results from the six equations (141-6), we have for the whole perturbation
of the moon by the lunar tides

1AW | | AW\ /7
o)

Igi"z.g;( Ji cos (N—y)) (sin 4f, — sin 2g,+ sin 2g) . (147)

Next take the case (ii.), and suppose that the sun is the tide-raiser. Here we need
only consider W,. Then noting that dW,/de’=0 absolutely, we have from (131)

1AW, ,dW,\ /=7 e . ,
(G b7 ) /=G sin (W =y —g) — sin (V—N'+g)}

Accented symbols here refer to the moon (as perturbed), unaccented to the sun (as
tide-raiser). Therefore j=0. Then reverting to the usual notation by shifting accents
and dropping useless terms, this expression becomes

+iicos (N—y)sin2g . . . . . . . . (148)

Then collecting results from (147-8), we have by (13)

g%: —%(y 47 cos (N—1)) ;—2 (sin 4f, — sin 2g, 4 sin 2g) — 1t cos (N —1) Tgll sin 2g (149)

This gives the additional terms due to bodily tides in the equation for dj/d¢, viz. : the
first of (133).
If the viscosity be small

sin 4f;— sin 2g, 4 sin 2g=sin 4f
1 21 g } ' (150)

sin 2g=3 sin 4f

Before proceeding further it may be remarked that to the present order of approxi-
mation in case (i.)

aw .
e =% sin 4f,

and in case (ii.) it is zero ; thus by (11)

simdf;, .. . . . . . . L (151)

We now turn to the perturbations of the earth’s rotation.

Here we have to find dW/de and cot ¢ dW/dy'—dW/sin ¢ dyf or
(1 =32 dW [idy' —dW [idys, and in the former may drop terms in ¢ and 7 cos (N—1),
and in the latter terms in j sin (N —1).
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First take the case (iil.), where the moon is tide-raiser and disturber. Here we may

take N=N', e=¢€, j=j4 throughout, and after differentiation may drop the accents to
all the symbols.

From (129)

0%/3;:—%1?1{750%2f1+jeos_(N'—¢+zfl)}= 1jsin (N—y) sin 46, . (152)

From (130)

T fa= Mificosg Hycos (V—y—g)} = 47sin (N—y)sin2g,. (159)

From (131)

d;?/g: 1G {tcos g +jcos (N—y+2)} =—%j sin (N—4) sin 2g . (154)

Therefore from (152-4) we have for the whole perturbation of the earth, due to
attraction of the moon on the lunar tides,

‘?Z/’g:%j sin (N—y)[sin 4f,+ sin 2g;—sin 2g] . . . . (155)

The result for case (iv.), where the sun is both tide-raiser and disturber, may be
written down by symmetry; and since j=0 here, therefore

aw o2 _
B N )

Next take the cases (v.) and (vi.), where the tide-raiser and disturber are distinct.
Here we need only consider W,
From (131)

=G {3 cos g+ cos (N—y+g)}

‘When the moon is tide-raiser and sun disturber, this becomes

—4jsin (N—y)sin2g . . . . . . . . (157)

‘When sun is tide-raiser and moon disturber it becomes zero.
Then collecting results from (155-7), we have by (18)
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- dr L . . T .
7s8in ¢ ~=}L‘7 sin (N —1) E(sm 4f 4+ sin 2g, —sin 2g)—E sin 2g | . (158)

This gives the additional terms due to bodily tides in the equation for dys/dt, viz. :
the last of (133).
If the viscosity be small

sin 4f, 4 sin 22, — sin 2g= sin 4f(1—2\)

sin 2g=% sin 4f

where (159)

)\=Q

n

-

Next consider the change in the obligﬁity of the ecliptic; for this purpose we must
find (1—13)dW /idy —dW [idy/, and may drop terms involving j sin (N—).

First take the case (iil.), where the moon is both tide-raiser and disturber.

Then from (129)

Cgc" /TE=—F]{(1—752—]’2) sin 2f, 44 sin (N—yp—2f,) — 7 sin (N—y26)} . (160)
g / ©=Fuf (1= —7?) sin 26+ sin (N ——26)— i sin (N—y-+21,)}
—]gzzogcv /T =F }* sin 2f)
Therefore

7

1 AW, 1dW,] /2 oo -
=) D | = (sin 26 sin (V— 283
=4(4jcos (N—y))sindf;. . . . . (161)
From (130)
aW, j°_
dy' | ®
AL TR Y 2 N N
— g | g =20 (27 sin g — 20 sin (N——g,)+j sin (N—y-+-g,) +/° sin g,}
12dWy /78
®dx /g

Therefore

—3G, {@*sin gy —y sin (N —dp—g))+¢ sin (N—+g,)+/°sing ] . (162)

=0

=4 (i+icos (N—y))sin 2, . . . . (163)
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From (131)
dW, /’T
dx/ g
dW, /‘r
d«lr/ a
dW /'T2
dx/ q

=—3G{*sin g+ sin (N—yp+g) —7j sin (N—y—g)+/?sin g} . (164)

3G —ij sin (N —y—g)+7° sin g}

Therefore
1 n@W, 1 dW 2 . ..
b(l""%@z)‘tgj—z ﬁ]/%= —3G{isin g7 sin (N —y+2)}
—4(4jcos (N—y))sin2g . . . . (165)

Then collecting results from (161-3-5), we have for the whole perturbation of the
earth due to the attraction of the moon on the lunar tides,

T . . . . :
F(l—- )cjliv i Zy]/ﬁ—%(z—l-j cos (N—1))(sin 4f; 4sin 2g, —sin 2g) (166)

The result for case (iv.), where the sun is both tide-raiser and disturber, may be
written down by symmetry ; and since =0 here, therefore

1, wdW 1 dW
[Z(l—%ﬁ)dx,—;w,]/— Lisindf . . . . . . (167)

It is here assumed that the solar slow diurnal tide has the same lag as the sidereal
diurnal tide, and that the solar slow semi-diurnal tide has the same lag as the sidereal
semi-diurnal tide. This is very nearly true, because £’ is small compared with 7.

Next take the cases (v.) and (vi.), where the tide-raiser and disturber are distinct.
Here we need only consider W,

o /= G {3sin g+ sin (V—otg) =i sin (V' —¥/—g)
i sin (N—N'+g)} - (168)
dW T vy , v - ,
— /Tg e — 1 sin (W'~ —g)+jj’ sin (N—N'+g)}
_ dW Jr —0

d/g
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Therefore

=)= ] =— 4G tisin g4ysin (N—y+e)}

‘When the moon is tide-raiser and the sun disturber, this becomes
—2(@4jcos (N—y))sin2g . . . . . . . (169)
‘When the sun is tide-raiser and the moon disturber, this becomes
—Xisin2g . . . . . . . . . . (170)
Then collecting results from (166-7-9, 170), we have by (18),

dr

o= 1(i+j cos (N—tﬁ))l: (sin 4f, 4+ sin 2g,— sin 2g) ™ sin Qg]}
s L)
Y TP
+42l:§ sin 4f g sin ZgJ Jl

This gives the additional terms due to bodily tides in the equation for di/d¢, viz. :
the third of (133),

1f the viscosity be small

sin 4f, 4 sin 2g, — sin 2g== sin 4f(1—2\) )

sin 2¢g =41 gin 4f
where ? N ¢ 1 £)
A =Q
n J

Also we have from (160-2—-4-8) to the present order of approximation,

aW /r* < e
. / - —% sin 4]
and by symmetry,
AW jr'? -
‘dy/%z —1 sin 44
Therefore by (18)
dn

/ "9 2
m_.(.lz.—._—léisin4fl—|—7—sin4f] T V)



THE ELEMENTS OF THE ORBIT OF A SATELLITE.

Now let
kT h
r= E E(sm 4f,— sin 2g; 4 sin 2g)
Gzig ': —(sin 4f, — sin 2g,+ sin 2g)+7—7, sin 2g]
~
A= 41[ (sin 4f, 4+ sin 2g,— sin 2g)—|—- sin 4f_2§ sin 2g}

41 [g (sin 4f,+ sin 2g, — sin Zg)—

nel

Then the four equations (189), (149), (158), and (171) may be written

1
] = N _ G sin (V—1)
Y — —1j— G cos (N —4)
i%:Dj sin (N—1)
%:Ai+Dj cos (N—1)
Also from (151) and (173)
1 ]
Z ;Zg —%—;— sin 4f1
OUZZ— 12{: sin 4f) --[—2 " sin 4f

781

(174)

(175)

(176)

These six equations (175-6) contain all the secular inequalities in the motions of the
moon and earth, due to the bodily tides raised by the sun and moon, as far as is

material for the present investigation.

The terms which are omitted only represent

a very small displacement of the proper planes and of the inclinations of the planes of

motion of the two parts of the system to those proper planes.
Then reverting to the earlier notation in which

y=j sin N, p=1sin tp}
z=j cos N, {=v cos{

MDCCCLXXX. 5 H

(177)



782 MR. G. H. DARWIN ON THE SECULAR CHANGES IN

We easily find

dz

o =—T—G{ )
%:—I‘y—@m

B= Al4Ds f
%= An+Dy |

(178)

These equations contain the additional terms due to tides, which are to be added
to the equations (116), in order to find the secular displacements of the proper planes.
The first application, which will be made hereafter, will be to the case where the
viscosity is small, and it will be more convenient to make the transition to that hypo-
thesis at present, although the greater part of what follows in this part will be equally

applicable whatever may be the viscosity.

In the case of small viscosity the

functions T, A, G, D will be indicated by the corresponding small letters v, 6, g, d

Then by (140), (150), (159), (172) we shall have

Zc sin 4f k sin 4f

y=h 1) e
=117; Sm‘*f[ (1—2N) 472 —rr'] d= 1 Sm;f[ °(1—2\)—4rr']
where X:g

n

L (179)

And in the present case where ¢ and j are small, we have by (112) and (121)

k 7 T+ 'r I
=X 1T
o= gTB + 2 .!2, ﬁ -
k Te
a= é’:TB, b= - s
2
where ¢= —é%, the permanent ellipticity of the earth

(180)

These equations (180) are the same whether the viscosity be supposed small or not.

Then the complete equations are
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d
= aytan—(y+gl)

%= — (22+ad) —(yy+gn)
O ¢ £:30)

e Bytby+5(+d:

O —(BLAD)+Sy+dy |

If the viscosity be not small we have T, G, A, D in place of y, g, 5, d. As it is
more convenient to write small letters than capitals, in the whole of the next section
the small letters will be employed, although the same investigation would be equally
applicable with T, G, &ec., in place of v, g, &ec.

The terms in y, g, 8, d are small compared with those in «, a, 8, b, and may be
neglected as a first approximation. Also e, a, B, b vary slowly in consequence of tidal
reaction, tidal friction, and the consequent change of ellipticity of the earth, but as a
first approximation they may be treated as constant.

Then if we put

zy,=1L, cos (kt+m,), 2zy=L,cos (kyt—+m,) 1

l}....(182)
J

yy=DLy sin (kt4+m,), =L, sin (k0 +m,)
L=L cos (kit+m,), =L, cos (k,t+m,)
m=Lsin (k,t+m,), =L, sin (kyt+m,)

By (122) or (118) the first approximation is

=212, Y=ty (=448 9=+,
Ll mta_ b Ll kyta_ b (183)

L a o tR Z;_ a T tB

where

Before considering the secular changes in the constants L of intégration, it will be
convenient to take one other step.
The equation of tidal friction (173) may be written approximately

gvsin4f1. R O -2

because sin 4f will be nearly equal to sin 4f, as long as 2 is not small compared
with 7%  (See however § 22, Part IV.)
5m 2
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Also the equation of tidal reaction (151) is

2
EE %%sinzlfl. B ¢ 1))

ER R

Dividing one by the other and putting °*=7,¢"1%, we have

=17, €

and integrating,

E=itg [(1—) -l( )(1-513)} ... .. (186)

This is the equation of conservation of moment of momentum of the moon-earth
system, as modified by solar tidal friction. From it we obtain » in terms of &

§ 15. On the secular changes of the constants of integration.

It is often found difficult on first reading a long analytical investigation to trace the
general method amidst the mass of detail, and it is only at the end that the ruling
idea is perceived ; in such circumstances it has often appeared to me that a preliminary
sketch would be of great service to the reader. I shall act on this idea here, and
consider some simple equations analogous to those to be treated.

Let the equations be

92__ v W o
w=* T T

If « be constant, the solution is obviously
2=L cos (at+m), y=—Lsin (at+4m)

Now suppose « to be slowly varying ; put therefore a4-a't for «, and treat «, o as
constants.
Then

, @y /
—=ay-+a'ly, E‘g:—az—utz

Differentiating
dgz 9., ’ . dy ’

dt~ =—ua t<ay+ >—az
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The terms on the right-hand side of these equations are small, because they involve
o, and therefore we may substitute in them from the first approximation.
Hence

@? .
§§+a2z= —o'L sin (at+m)—2a/at L cos (ot 4m)

and a similar equation for #.
The solution of this equation is

z=1L cos (oct-i—m)-i—g;Lt cos (oct+m)—-%tLt cos (at-+m) ——%Lt2 sin (o +m)
The terms depending on ¢ cut one another out, and

7= I cos (at+m)—% Lt* sin (e4m)
Similarly we should find

y=—Lsin (oct—|—nt1)——a-;—,Lt2 cos (at+m)

The terms in ¢* are obviously equivalent to a change in m, the phase of the oscilla-
tion ; but the amplitude L is unaffected. We might have arrived at this conclusion
about the amplitude if, in solving the differential equations, we had neglected in the
solutions the terms depending on ¢, as will be done in considering our equations
below. In those equations, however, we shall not find that the terms in ¢ annihilate
one another, and thus there will be a change of amplitude.

That this conclusion concerning amplitude is correct, may be seen from the fact that
the rigorous solution of the equations

dz dy .
d—t—ay’ ai oz
is
2=L cos (jadt+m), y=—L sin (fadt+m)
=L cos (at+my—[a'tdt), =—L sin (at+4m;— [e'tdlt)

‘Whence L is unaffected, whilst

m=m,— [o'td¢
So that
dm Ao

e

= tn
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Next consider the equations

& W gy
@IV T vy

Where o is constant, but y is a very small quantity compared with «, but which
may vary slowly.
Treat y as constant, and differentiate, and we have

P oo dz
ap = _7<dt +ay>

Py dy
%é-—]-azy: -—'y<%-—az>
Then if we neglect y, we have the first approximation

z=1L cos (at+m), y=—L sin (af-+m)

Substituting these values for z, ¥ on the right, we have
% .
et z=1y2aL sin (af--m)

And a similar equation for 7.
The solutions are
#= L cos (at+m)—yLt cos (at4m)

= — L sin (at-+m)-+yLt sin (at-+m)

From this we see that, if we desire to retain the first approximation as the solution,
we must have

SS=e—y o o (187)

This will be true if y varies slowly ; hence

L= L/
and the solution is
p= Ly cos (at+m)

iy=— Lye" gin (at+m)

It is easy to verify that these are the rigorous solutions of the equations, when « is
constant but y varies.
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The equation (187) gives the rate of change of amplitude of oscillation.

The cases which we have now considered, by the method of variation of parameters,
are closely analogous to those to be treated below, and have been treated in the same
way, so that the reader will be able to trace the process.

They are in fact more than simply analogous, for they are what our equations
(181) become if the obliquity of the ecliptic be zero and {=0, »=0. In this case
L=y, and dj/dt=—jy.

This shows that the secular change of figure of the earth, and the secular changes
in the rate of revolution of the moon’s nodes do not affect the rate of alteration of the
inclination of the lunar orbit to the ecliptic, so long as the obliquity is zero. This last
result contains the implicit assumption that the perturbing influence of the moon on
‘the earth is not so large, but that the obliquity of the equator may always remain
small, however the lunar nodes vary. In an exactly similar manner we may show that,
if the inclination of the lunar orbit be zero, du/dt=1s.

This is the result of the previous paper “On the Precession of a Viscous Sphermd ”
when the cbliquity is small.

According to the method which has been sketched, the equations to be integrated
are given in (181), when we write a4-o't for «, a+a't for a, 848t for B, b+b't for b,
and then treat a, a, &c., &/, a, &c., v, g, &c., as constants.

Before proceeding to consider the equations, it will be convenient to find certain
relations between the quantities a, a, &c., and the two roots «; and «, of the quadratic
(k+a)(k+B)=2ab.

We have supposed the two roots to be such that

reseef
. 188
= — /=BT o)
Then

ky=(af—ab). . . . . . . . . . (189)
k*+Kk?=a?+ 32+ 2ab } (190)

K 2ky" = (o 4-ab) (B +ab) —ab(a+ B)* '

BP+ab— i = (k4 ko) (y +t) 1

182+a’b_K2 (K1+K2) K1+ ) , (191)

(

(
@?+ab—k*= (1, + ky) (ky+B)
@’ +ab— k= (K1+K2)(K1+B)_J
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Kl+a=_(K2+B)} (192)
K2+0‘=""(K1+IB)
ab(a+4B)=(x+ o)kt a)(r;+Ky) . . . . . . . (193)

Now suppose our equations (181) to be written as follows:—

%’j: oy +an+s )

%:—az —al+u

i Lo o (194)

2= Bntbyto

dn__

Where s, u, o, v comprise all the terms involving o, a/, &c., v, g, &c.

“Then if we write (z) as a type of 2, ¥, {, 9; () as a type of a, a, B, b; () as a type
of o, a/, B, b'; (y) as a type of y, g, 8, d; and (s) as a type of s, u, o, v; it is clear
that (s) is (2)(e)¢4(y)(2).

Differentiate each of the equations (194), and substitute for %%) after differen-

tiation. 'Then if we write equations

S=g§ “Fau +av h

duw
U_ﬁ—as —ao

o e e (199)
=&?+,3v+bu

dv
=g —Ro=bs
The result is
@

7 = —(a?+ab)z —fa(oc—l—,B)ﬁ—l—S A

P — (et ab)y—a(at-Bm+U
Lo (196)
2

¢

dt
O (B rab)l (et )+

d2
25 =—(B+ab)p—b(a+B)y+1 |
From the first of these

— (B ab)a(e+ )= (B-ab) T+ (a+-ab)(B~+ab)—S(B+-ab)
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Therefore from the third

a(atp) d,2—<32+ ab) t2+{(a2+ab)(/32+ab)—ab(a+B)2}z—S(Bz+ab)+2a(a+ﬁ)
and by (190)
a(atB) o = (B+ab) 7 it — S(B-Hab)+ Sa(u-+B)

N

Similarly

d2 2 2
a(at-B) T2 =(Bab) 2 4y —U(B+ab)+ Ta(a+6) F (107)

bat-B) T = (a2 ab) T +rfiil — (P +ab)+ Sb(actB)

d* d?
b(atB) ) =(>+ab) 5 i n— T(e*++ab)+ Ub(a+g)

Differentiate the first of (196) twice, using the first of (197), and we have

g; ( 2+a’b) dtz (182+a’b) dtz —K K22z+<52+a’b+dﬁ> S Ea’(a—l_ﬂ)

Therefore by (190)
[gg‘F(Klg'l' Ky?) %+K12K22] z=<,32+ab+g%> S—sa(a+B)
Then writing (S) as a type of S, =, U, T,—
. ; P d(z
(8) is of the type (2)(«)(«)i+ (=) () (&) + (@) &)+ o2 (@) ) -

Hence every term of (S) contains some small term, either («') or (y).

Therefore on the right-hand side of the above equation we may substitute for (z)
the first approximation, viz.: (z,)+(z,) given in (182-3).

When this substitution is carried out, let (S,), (S,) be the parts of (S) which contain
all terms of the speeds «, and «, respectively.

Then by (191) and (193) the right-hand side in the above equation may be written

3,
(174 10) (ko )S,— 3 s ) o))+ (2 5 ) S
+ the same with 2 and 1 interchanged.

4 - 2 .
Now let D* stand for the operation ;Lﬂ+(x12+ Kﬁ)gﬁ—l—xlgxﬁ and we have

MDCCCLXXX. 51
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K +a a?
D= (K1+K2)(K2—|-a){SI—T+21} +<K12—|—%@>Sl )
-+ the same with 2 and 1 reversed
1t
Déf‘/:(Kl‘i'Kz)(Kz‘l'“){Ul_ﬁio‘Tl} +< +dt2>U + de. - (198)

D= (K1+K2)(K2+18){21_K1:BSI} ‘|'< +dt2>21+ &e.

D= (ki) kot B) { 1= 50, b (124 - e

-

The last three of these equations are to be found by a parallel process, or else by
symmetry.

If the right hand sides of (198) be neglected, we clearly obtain, on integration, the
first approximation (183) for z, %, { %. This first approximation was originally
obtained by mere inspection.

We now have to consider the effects of the small terms on the right on the
constants of integration L,, L,, L, L, introduced in the first approximation.

The small terms on the right are, by means of the first approximation, capable of
being arranged in one of the alternative forms

cos
sin

}Klt—l—tzj;}lclt-l- the same with 2 for 1

Now consider the differential equation

dtz

T (2+b2) 2+a262w=Acos(at—l—n)+Btcos(at—|—n) coe . (199)

First suppose that B is zero, so that the term in 4 exists alone.

Assume x=Ct sin (at-+7) as the solution.

Then
0;;5 C{—a’ sin (at+n)~+2a cos (at+m)}

ili# C{at sin (at+4n)—4a® cos (at+n)}

By substitution in (199), with B=0, we have

Of — 403+ 2a(a?+ 1)} =4

Therefore the solution is

A .
r= —mt sin (at-4n)
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By writing n—4m for 7, we see that a term A sin (at417) in the differential equation

would generate <t cos (at+n) in the solution.

A
2a(a®—1?)
~ From this theorem it follows that the solution of the equation

D%=Fy,+Fyy,
18
o iFy
= 5‘?("12 — ")

+ the same with 2 and 1 interchanged

and the solution of
DY%=Fm+Fen,
is
. A<
26k —x5?)

-+ the same with 2 and 1 interchanged
Also (writing the two alternatives by means of an easily intelligible notation) the
solutions of
Ty %y E %y
pvenfian;

are

IF, { n
i

e e P ) the same with 2 and 1 interchanged

The similar equations for D*(, D*) may be treated in the same way. The general
rule is that

y and n in the differential equations generate in the solution tz and t{ respectively ;
and z and { generate —ty and —ity respectively ; and the terms are to be divided by
21, (k> — %) 07 2Ko(Kky®—K,\?) as the case may be.

Next suppose that 4=0 in the equation (199), and assume as the solution

x=C¢* sin (at—+n)~4 Dt cos (at+n)
Then
%: - C{—a*”sin (at+n)+ 4at cos (at+n)+2 sin (at+n)}
+D{ —a® cos (at+n)—2a sin (at+n)}

. 4,
%: C{a't? sin (at+4n)—8a’t cos (at—+n)—12a°sin (at+n)}

-+ D{a' cos (at+mn)-44a? sin (at+n)}
512
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Then substituting in (199), we must have

4aC(*+b*)—8a*C=DB
and
2(C—aD)(@*4+0")—12a*C+4a*D=0
‘Whence
B 5a?—b?
C= T da(aP—1?) D= T 4P (a® — )

Hence the solution of (199), when 4=0, is

5% —

= —th cos (OLt—l—”/))

mBl sin (OLt—I—’r])

If ¢ be very small, the second of these terms may be neglected.
By writing y—3i7 for 7, we see that a term Bfsin (at+4x) in the differential
equation, would have given rise in the solution to

r=— -—*—»Bt sin (at+m)

a/fZ(anZ bZ)2
t being very small.
By this theorem we see that the solutions of the two alternative differential
equations

D= tFl{ 2+th{ z
’ 2

are, when ¢ is very small,

%ﬂ? { " — the same with 2 and 1 interchanged.

The similar equations for D*y, D*), D*{ may be treated similarly. The general rule
is that:—

tz and t{ in the differential equations are reproduced, but with an opposite sign in
the solution ; and similarly ty and ty are reproduced with the opposite sign ; and in
the solution the terms are to be multiplied by

%2 2 ®
51,* — K, bry? — Ky

4'612('61 = 7 e — i)

For the purpose of future developments it will be more convenient to write these
factors in the forms

1 2y 1 1 Zry 1
2, (10> — #5%) { Ky —Kg? ot 2"1} and 2rey(10* —1,%) { Ky ‘_"12+ 2"2}
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By means of these two rules we see that the solutions of the two alternative
differential equations

D“’z:Al{Zi+tBl{2+the same with 2 for1 . . . . . (200)

are, so long as ¢ is very small,

% 4
tA, { g B, { & [ 2 +L—]

2, (k1% — reo?) - 26, (K1 — %) L"12 —Ky® ' 2,

+the same with 2 and 1 interchanged (201)

z=2z+

Then putting for z,, {;, &c., their values from (182), these solutions may be written,

b
( tAl{ 1?1’ zBl{ fi’ oo 1 ]}

_ 3 -
oS (K1t+m1) LLI + 2pe,(re? —K?)  261(ry? —‘"22)1._"12 —r® " 2Ky

+ the same with 2 for 1 (202)

Hence we may retain the first approximation

z=1L, cos (k;t+m,)+ L, cos (k¢ +m,)

as the solution, provided that L, and L, are no longer constant, but vary in such a
way that

A L B L
L P

dt —2/61(1612;/622)_2161(/612—-I€22> Kt —rl? ' 26 |} e (208)

and a similar equation for L, b

It will be found, when we come to apply these results, that the solution of the
equation for D*y will lead to the same equations for the variation of L, and L, as are
derived from the equation for D*.

A similar treatment may be applied to the equations for D*{ or D', and we find
similar differential equations for d.L,'/dt and d.L,/dt.

These equations will be the differential equations for the secular changes in L, and
L,/, which are the constants of integration in the first approximation.

We will now apply these theorems to the differential equations (181); but as the
analysis is rather complex, it will be more convenient to treat the variations of «, a,
B, b and the terms in y, g, 8, d independently.

We will indicate by the symbol A the additional terms which arise, and will write
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the symbol out of which the term arises as a suffix—e.g., we shall write Az, for the
additional terms in the complete value of z, which arise from the variation of a. Also
(dL/dg), will be written for the terms in dL/d¢t which arise from the variation of a.

Terms depending on the variation of o.

We now put for a in (181) a+-«t.
Hence in (194)
s=a'ty, u=—o'tz, c0=0, v=0

Therefore
S= oc'{y—t<az-——%l>}, S=—a'btz
And by substitution from (182-3)
S,=a'{y,+tz,(k,—a)}, Z,=—a'biz
S,, 3, have similar forms with 2 for 1.
Then

il

d? , ,
<K12+C‘Z;2>S1=2“ (Klf‘o‘) 7 2a Kl("l_“)?/]

Sl—xlgsza'{yl+t21(f<1—a)} +o't(k+a)y

=o' {y 2z}, - . . - . . . . . (204)

Hence the equation for z is
Dt (i, 6) (k) (94 2075) — 2, (o, — ) - the same with 2 for 1

Hence by the rules found above for the solution of such an equation

25

lAz L W {(Kl—{- Ko) (kg 0t) — 26y (1) — o) — 2, (i, +K2)(K9+a)[;c12—x22 +2i,cl]} +&e.

at 2k, (16,2 — Ko?)

! 21, (rey + “)].
= e Ky —o———— 14 &e.
Ky —"221: ! T (k11— o)
“+a Kyta

= —2 — s
]<"1 —Ky)? 2("1 —K,)?

‘Whence

_];' d‘Ll — ’ K}‘l‘“ 1 d_Ez - , /(;2-]-“*
<L1 dt)a_”“(/cl—/cz)ﬁ’ <L2 i) =" ey - (209)
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If we form U and 7, and solve the equation for D*y, we obtain the same results.
Again

’ d“ ’
< +dt9>21 — 20 b-d%l=2oc by,

/c+,8 b b K+
5= = _~2+B{S fte zl}

b
“,62+B<?/1+2t"1'41) by (204)

Hence the equation for { is

a_}BD%: (1174 19) (9,4 2tk 12)) + 21y, +the same with 2 for 1

And by the rules of solution

L A 2k
Al= 26, (1, l—xg)[Kl+K2+2K1 2"1("1‘|"‘2){ Sy + H‘l"&c.
— zl _
—_— zl _ zg
(ly—re3)*  (ky—rp)?
__l Kyt a 1 /c]+occ
b (1, —ry)? 17p (16, —rg)?™?
Since
Ko+a ;c +“
zl=—~——2b gl) it e Cz
Hence |
_}_dLll — , Kyt 1 dL, , Kt
<Ll' dt>_ * oy —reg)? <L' dt) T ey —ry)? (206)

If we form U and T, and solve the equation for D*), we obtain the same result.

Terms depending on the variation of B.

The results may be written down by symmetry.

z and y are symmetrical with { and 7, and therefore unaccented L’s are symmetrical
with accented ones, and wvice-versd,; « is symmetrical with 8, and vice-versd.

The suffixes 1 and 2 remain unaffected by the symmetry.
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Then (by (192)) writing for k48, k;+8; —(k+a) and —(k,+a) respectively, we
have by symmetry with (206),

_1_@1 , K ta 1 dL, , Kogto
<L1 dt> =B o=y <L2 dt> =Bla—ey = - o (207)

And by symmetry with (205),
LAY _goate (L) _gonie
(&)=t (& =Bty - 09)

Terms depending on the variation of a.

We now put for a in (181) a-ta’z.
Then in (194)

s=a'ty, u=—a't{, =0, v=0
Therefore

S =a’n—|-a’t<%7—a > S=—a'bt{
S;=a'{m+t{(x,—a)} Z=—a'bt{

S, 3, have similar forms with 2 for 1

Sl_/ﬁ;'u a[771+t§1(l<1—06>+t§ Kl-l-a)]_a, [771+2K1tC1J .. (209)

Hence the equation for z is

D= — 2 — ), (k) (e -0) oy 20,28,) 4 the same with 2 for 1

1
a't A 2’61("1§1—’C22)[ 2K1(K] —oc) + (K1+K2)(K2+a)

2
— 2t (ko)) e
& 26, (kg +a )
p e o
— K1+o C Ko+
Ny —rg)* Py —r,)?
b k+ta b kta b b

e

smce = =2y
’ Cl le s+ o 2/cl +a

—_7 ——
1(“1""2)2 Kyt oy —rp)® Kyt
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Therefore ‘
1 dZ, _ a’b K ta 1 di, b kyta
<L1 4 >a~ (e —1e3)?® 13+’ <L dt> - ("1""‘2) o ta (210)
Again
w4+ 3 b _ b ]+ oy
- a 5=2— K +aS1—/c2+B<S1_ 1b 21)
e +B(771+2K1t51) by (209)
Also
@ s /
<K12—|—('Z‘t§>2 —2a b , =22 brm,
Therefore the equation for { is
;%D4€>=(K1+K2)(’Y]l+2K1t€1)+2K17)1+ the same with 2 for 1
Therefore
Al = 20y —2 24 &
AL e (k) 20— 20 (i) (k) e
__&
_”12—K22<1_K1—"2>+&C
___ & &
(ly—r)® (16— 1p)?
Therefore
1 dry\ _ _ ab 1 dLy\ __  ab
< ) dt >a— (-, —Ko)® < o i >a— (—rp)* = 7 (211)

The same results might have been obtained from the equations to D'y, D*.

Terms depending on the variation of b.

By symmetry with (211)

1 dZ, ba 1 dL, ba
<L dt) _("1_"2)2’ <L dt) _("1—"2)2. S (212)

By symmetry with (210), and putting —(ky+a) for (x,+B) and —(x;+a) for
(<o +8) |

<1 dL1’> - ba  kyta <1 dL, > ba & +a (213)

Z—l’ at Jy (ky—Ko)* 6+’ \L) dt T (k= k) Kyt

We now come to a different class of terms, viz. : those depending on vy, g, 3, d.
MDCCCLXXX. 5 K



798 MR. G. H. DARWIN ON THE SECULAR CHANGES 1IN

Terms depending on .

Here
§==—vyz, u=—yy, o=0, v=0
d,
S =—y<£+ay> 2 =—byy
Si=y(k,—a)y, 3 =—yby,
Sy, 2, have similar forms with 2 for 1
Obviously

a2
<K12+@>Sl =0

Kyt o
Sl __'lf_zl= 2'}”(1?/1 . . . . . . . . . (21 4:)

Hence the equation for # is

'%D"’z= 2, (ky 4 5) (kg +a)y, + the same with 2 for 1

Therefore
1 Ko+ o K +a
@Azyzzlxle—x2+z2x21—xl
And
(l%) — ’C2+“ <]; %) —_— Ma_ (915)
Lydt ), Te—r) \L, di y— yfcl—/ce' oo s \E
Again

And the equation for {is

:y}]—OD%: 21, (k- 1,) 1/, + the same with 2 for 1

Therefore

4 &)

+

Ky—Kg Kog—Ky

1
fy—btACV_

__§l Kyt+a _é:Q K+
b oky—ky, b —xk,

. Kyta & a
» SINCe 2= ZlT’ Zy= CzT




THE ELEMENTS OF THE ORBIT OF A SATELLITE.

1 4L/
L dt

Terms depending on 8.

Hence

K t+a

/c2+u~ <l._ dL2’> _

) ’
ky—ry \Ly dt ], Ky —Ky

These may be written down by symmetry.
—§8 is symmetrical with y. Hence writing — (k;+o) for x4, and
(k,+8B), we have by symmetry with (216)

LI\ kb (LdL) __geta
L, dt 3— kK —ry N\l dt )s Ky —Ky

And by symmetry with (215)
L dLyy _
<L1’ dt )5

Terms depending on g.

srate (1 dL2’>=_8/c2+a
)

R —
Ky —Kq Ky — Ky

I dt

Here
s=—gl, u=—gn, 0=0, v=0
d
S=—g(ften)  T=—ghy
/
Si= glkg—a)y 3 =—gbmn,
S,, 3, have similar forms with 2 for 1
Clearly
d2
<K12+ ojgg)sl
S, — x1+a21—2g'<1m

Therefore the equation for z is

%.D‘*z: 2, (k1) (g + )y, + the same with 2 for 1
t=}

Thence
Ko+ a K +a
A —_ 2 =
e N e
2 b since {,=2 b 4 b
=g — 2y, Sl =g — = -
Yo, —r, “ry—ky T 4w T Pkt

Hh K 2

799

(216)

— (ky+a) for

(217)

(218)

(219)
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Therefore

1 4L, b 1 dL, b

— ) = s — e s (22

<L1 dt>g g"l_’% (L dt) g"l""2 (220)
Again

d2
<K12+d—t2> 1=0
and

+ b +a
21_K1aBSl=’C +B[S _fTe 21:‘

2bek
=g, gn by (219)

Therefore the equation for { is

D4§—-2K1(K1-|—K2)m+ the same with 2 for 1

gb
Hence
1., & &,
obt cg—/cl——/cg_l_/cg—fcl
Therefore
1 drL/ b 1 dr/ b
—_— == 2 —_ T o — . . . . . 2’
<L1/ dt >g g"l“’cz ( o di >g g"l“’cz (221)

The same results may be obtained by means of the equations for D'y, D'y,

Terms depending on d.

These may be written down by symmetry.
—d is symmetrical with g. Therefore by symmetry with (221)

AN 8 1 dz, 8 ‘

R i RPN €5
and by symmetry with (220)

1 dLl’> a 1 CZLQ’> a

= =+ ) ==d > - =d——. . . . . (223

<L1’ dt /a o=y L db Jo (e —ry) (223)

This completes the consideration of the effects on the constants of integration
Ly, Ly, L, L, of all the small terms.
Then collecting results from (205-8, 210-13, 215-18, 220-23),
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1 dL,_ 1 | o ke o
£ =ttt =) v
1
ey o) 80+ 0) +gb—da}
1 dL 1 b
A “gzr=(—:—{ —(sra) (= )= 5]

(k4 o) +8(ry+ ) +gb—da}

, p , Kyto
7 @ Z(Z—/c)g{ (ky+e)(of =) —a'b—D'a 2+a}

1 dL/ 1 - WOV N T ok
B @ =y bt =)=t

1
= e, @)+t ) +gb—da]

-

-

801

(224)

We shall now show that these four equations are equivalent to two only, and in
showing this shall verify the correctness of the results.

To prove that the four equations (224) are equivalent to two.
In (118) we showed that

L _mta
L, a
Therefore we ought to find that
1z 1 dl,_ o/
L/ dt T L, dt e ta ozz("l""“)_a
k,+B d a

="a alatTg

Now by (188)

and

so that

2(ky+a)=a—B—/(a—p) +4ab

(x—B)(*' =) +2(x/b+ab)

Ky —Kq

2(%(1(] +o)=ao —fB'+

(& =B (ry +a) +a'b+ab’

foy=—Kq

d,
(’Z‘t("1+“)=

And thus we ought to find that,

1 dLy 1 .dL7|
(o= ) [ = S [ =B =) = ()
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Now if we subtract the first of equations (224) from the third we shall find this
relation to be satisfied. Hence the first and third equations are equivalent to only a
single one.

Similarly it may be proved that the second and third equations are similarly
related.

To prove that the four equations (224) reduce to those of § 6, when the nodes revolve
with uniform velocity.

It appears from §13 that when a and b are small compared with a—f, the nodes-
revolve with approximate uniformity, and the nutations of the system are small.
If this be the case, we have approximately

K=—0, kK,=—/F0.

It will appear later that («'—8")/(x—gB), a'[a, b’/b are quantities of the same order
of magnitude as vy, g, §, d.

Now L,=J, the inclination of the lunar orbit to its proper plane, and L, =I, the
inclination of the earth’s proper plane to the ecliptic.

Therefore, the first and last of equations (224) become

1dJ__ gh—da
Jar— 7T 48
1dl gb—da
Idt S+ a—f

But since the nodes revolve uniformly, b/(a—g) and a/(«—f) are small, and there-
fore the latter terms of these equations are negligeable compared with the former.
Hence

These results in no way depend on the assumption of the smallness of the viscosity
of the planet, and therefore we may substitute I' and A (see (174)) for y and 8.

A comparison of the expressions for I and A, with those given in Part 11. for dj/d¢
and in my previous paper for di/dt, will show that our present equations for dJ/dt
and dI/dt are what the previous ones reduce to, when 7 and j are small. But this
comparison shows more than this, for it shows that what the equation (61)§ 6 really
gives is the rate of change of the inclination of the lunar orbit to its proper plane, and
that the equation (66) of the paper on ¢ Precession ” really gives the rate of change of
the inclination of the earth’s proper plane (or mean equator) to the ecliptic.
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To show how the equations (224) reduce to those of §10.

We now pass to the other extreme, and suppose the solar influence infinitesimal
compared with that of oblateness.
Here
a=a, B=b, y=g, 8=d

K=—(a+b), k=0

Then the equations (224) reduce to

1 dLZ, a’b—b’a

z @ = 8Tt

1 dLy a’b—b’a

o, = — —_—— 25
1 dZ R

L, dt =0, Ly di =0 ]

Therefore L, and L, are constant. Also from the relationship between them

‘Li’__ _("2‘*‘“)__
Ly, a

1

Hence it follows that the two proper planes are identical with one another, and are
fixed in space. They are, in fact, the invariable plane of the system, as appears as
follows :—

If we use the notation of § 10, L,=j, L/=1, and L,/L;=—(x;+a)/a=Db,a; so that
at=hy.

Nojw a=kre/¢, b=1¢/n, and 7 and j are by hypothesis small, therefore we may write
the relationship between a, b, ¢, j in the form

£

'

sin j=mn sin 4.

This proves that the two coincident planes fixed in space are identical with the
invariable plane of the system (see 108).
But the identity of equations (225) with (71) of § 10 and (29) of the paper on
“ Precession ” remains to be proved.
If 7 and j be treated as small, those equations are in effect
dj Co
=8+
T i)

(or with G and D in place of g and d if the viscosity be not small).
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Hence if (225) are identical with (71) and (29) of “ Precession,” we must have

7 a’b—ab’

8=t )
z'___ _a’b—ab’
d=—g ba+b)

But ¢/j=Db/a ; therefore the condition for the identity of (225) with (71) and (29) of
“ Precession ” is that

(a+b)(gb4ad)+a’b—ab'=0 . . . . . . . (226)

Or if the viscosity be not small, a similar equation with G and D for g and d.

We cannot prove that this condition is satisfied until a’ and b” have been evaluated,
but it will be proved later in § 16. :

This discussion shows that the obliquity of the earth’s equator (L) to the invariable
plane of the moon-earth system, when the solar influence is infinitesimal, degrades into
the amplitude of the nineteen-yearly nutation, when the influence of oblateness is
infinitesimal. The one quantity is strictly continuous with the other.

This completes the verification of the differential equations (224) in the two extreme
cases.

§ 16. Evaluation of &', a’ dc., tn the case of the earth’s viscosity.

The preceding section does not involve any hypothesis as to the constitution of the
earth, but it will now be supposed to be viscous, and the various functions, which
occur in (224), will be evaluated.

By (184-5) we have

2
! d—§=%1 sin 4f) 227
kdt g

D1 gin 4t (14T 2

4 =%y on 1< + 7> (228)

The last equation is approximate, for by writing it in this form we are neglecting
7%(sin 4f—sin 4f))/7* sin 4f; compared with vnity.

This is legitimate, because when (sin 4f—sin 4f})/sin 4f, is not very small, 7'%/7% is
very small, and vice-versd ; see however § 22.

Hence (228) may be written
| dn__ (1dE T\?
B



THE ELEMENTS OF THE ORBIT OF A SATELLITE. 805

Let
nt-%? L (280)

m is the ratio of the moment of momentum of the earth’s rotation to that of the
orbital motion of moon and earth round their common centre of inertia. (The
of my paper on “Precession” is equal to the reciprocal of M, where M, is the value
of mt when t=0.)

By (121) and (112) we have,

azéfz

Now e=4n?/gq, the ellipticity of the earth due to rotation; and as 7=%um/c® and
E=+/ % therefore r=17,/£°.

Hence

o
T
Differentiating logarithmically

v ga=—a) {0+ ) )+
(e e

a=m’ ... (282

a’:—(};%><;§>m{2<1+<§>2>+7m}. Co L (233)

Then by (121) and (112)

Also since

~

|

a—a=4-

©

Since N2=12,/€% and 7’ is constant (or at least varies so slowly that we may neglect
its variation), we have

a—a £ ;_<k dt >n3m
Now g—z \, hence LT/ 1
a’_a'_fn, T\2AL

Therefore

kodt)\n*) T 2Ag
MDCCCLX XX, 5 L

oc'—af=<lﬁ><@>.‘-—l§m Co e (284)
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806
From (233-4)
o E R I
Also
-—T;Eéi—#m] o (239)
By (121) and (112)
b:%:ig. L (287)
Therefore
Y 1dn 6 dE
v a g a o
(}f)}{ <>+6m}. L (238)
And ‘
H=<£WQF%SZW%----o . (239)
Trom (231) and (238)
j{—%: @gf) { +<Z~'>2+m}. L (240)
By (121) and (112)
B— :%ﬁ—in

F-v=g a=—{ i +(2))
_<%%§><§>(£><1+(7;)2> L (241)
e T

e 7’ :
3_;@+;). o (249

By (174), (227), and (230), when the viscosity is not small, we have

Therefore

Lastly
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1 dg\m (sin 4f,— sin 2g, + sin 2g) )
- 2n sin 4f;

. . . T .
o 1 dg\m (sin 4f, — sin 2g, + sin 2g) + o sin 2g
T \k dt)2n

¢ sin 4f;
o : . 'TI . 'r, 2 . & . . (244)
A 1dg\1 (sin 4f; + sin 2g; — sin 2g)—2;s1n2g+(;> sin 4f ‘
T \k dt)2n sin 4
D lif l(sin4fl+ sin 2g; — sin2g)—§_— sin 2g
T \k dt)2n sin 4f) J
If the viscosity be small we have by (179), (227), and (230)
_(ldgym 1 )
Y=k dt)on 1=
Pl
_(raem T3
8=\k dt )on 1o L
’ N9 . . . . . . . (245)
——C (T
o_frap 1 =2 +()
“\k dt)2n 1—x
'T,
qo(tagy1 TP
T\ dt)2n  1—n

-~

I'think no confusion will arise between the distinct uses made of the symbol g in (244)
and (245) ; in the first it always must occur with a sine, in the second it never can do so.

[If 7" be zero
52

a+b=;—2(1+m)
and by (232), (2387), (240)
b —ba'= (= ZE\™(V (1 )
ab = a—<7c dt>n<n
Therefore we have

(bG+aD)(a+b)4+ab—ba=0

This was shown in (226) to be the criterion that the differential equations (224)
should reduce to those of (71) and of (29) of “Precession,” when the solar influence
is evanescent, and the above is the promised proof thereof. |

5L 2
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From (244), (237), and (232) we have

2(1 +;) sin 2g—2 sin 2g,

_ (1 dg\/m\/Te coo . (246)
bG_aD“(h dt><%><n> sin 4f,
and similarly )
O+ T
Crag\/m\E\T e (247)
bg_ad—_<k dt><2n><%> 1-x

§ 17. Change of independent variable, and formation of equations for integration.

In the equations (224) the time ¢ is the independent variable, but in order to
integrate we shall require ¢ to be the variable. It has been shown above that these
equations are equivalent to only two of them; henceforth therefore we shall only
consider the first and last of them. It will also serve to keep before us the physical
meaning of the s, if the notation be changed; the following notation (which has
been already used in (127)) will be adopted : —

J= L, = the inclination of the lunar orbit to the lunar proper plane.
I= " L,/= the inclination of the earth’s proper plane to the ecliptic.
I,= L,’= the inclination of the equator to the earth’s proper plane.
J,=— L, = the inclination of the lunar proper plane to the ecliptic.

Then since J, I, &c., are small, we may write

arL arL)
zl—lzol.logta,n%.f, Z»j,:d.logtan%l. Coo o (248)

This particular transformation is chosen because in Part IT., where j and ¢ were not
small, dj/sin j seemed to arise naturally.

Also since
L) mite Ly Kyt o
'Ll— a ’ ]/,2 a
we have
sin T,=—"“1 5in JN]!
' (249)
. a .
sindJ= —"—ginT |
Kyt o

These equations will give I, and J, when J and T are found.
Now suppose we divide the first and last of (224) by d€/nkdt, then their left-hand

sides may be written

d
72/@'@ log tan 4J  and nkd% log tan 41
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In th= last section we have determined the functions a, o, &ec., and have them in
such a form that T, G, A, D (or v, g, 8, d) have all a common factor d¢/nkdt.

But this is the expression by which we have to divide the equations in order to
change the variable.

Therefore in computing T, G, &ec. (or vy, g, &c.), we may drop this common factor.

Again a, a, B, b were so written as all to have a common factor 7¢/n; therefore
Kk, and k, also have the same common factor.

Also &’ a’, B, b all have a common factor (d&/kdt)(re/n?).

From this it follows that when the variable is changed, we may drop the factor 7¢/n
from a, a, B, b, Ky, k, and the factor (dé/kdt)(re/n?) from o, ', B, V.

Hence the differential equations with the new variable become

1 ot ~
Z"n—flogtan = (xl—/cg)?{—(Kl'F o) (o — ) — 1+ —b }
1
m@{y(xg+a)+8(xl+a)+gb—da} |
12 | edal [0 (250)
kn?logtan 3= m&{—(Kl—Fa)(a'—B')—a’b —paate ;+a}
(6~ ){'Y(K1+“)+3(K2+u)+gb da}
J

or similar equations with T, G, A, D in place of y, g, 8, d if the viscosity be not small.
But we now have by (282-8-5-6-7-9, 242-3-4-5-6-7)

1 T M
o m+’T 2’5\;, a—m, IB_1+'T’ b.—]_
el 3 TV N e \?
=7 e 2147+ ] = —m{af1 (7] 4]
, - \2 +\3
F=—{1+7T 42 +(7) +om}, w=—{1+(7) +om]
— 1yt 4 — sin 2g, + sin 2g
I'=sm sin 4f, ’
(sin 41, + sin 2g,— sin 26)—27 sin 2 +<T'>2' At |
m n 2¢, — sin 2o T sin 29 - Sim 4
A= T i T o (25])
2 sin 4f)
T (\?
_m _1—2X—~;+<;>
YToa—ay  °T T 3w
2<1 + I_;) sin 2g—2 sin 2g,
bG—aD=3m sin 41,
T/
m<2x+;>
bg_ad:?a“_)\_)“ ]
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In these equations we have, recapitulating the notation

kn N n?

m="go= 0= . (252)
Also
ki Fr=—a—p } (253)
Ky —Ky=—1/ (a—B)*+4ab |
Lastly we have by (186)
&=1+-—1—{(1_g)+%§<7—’>2(1—513)} o (2584)
1y en To

which gives parallel values of n and &

These equations will be solved by quadratures for the case of the moon and earth in
Part IV.

If 7//7 be so small as to be negligeable, and 7'/2\¢r small compared with unity, then
the equations (250) admit of reduction to a simple form.

With this hypothesis it is easy to find approximate values of «, and x,, and then by
some easy, but rather tedious analysis, it may be shown that (250) reduce to the
following—

m41.. 1 1+11m)

d -
@ L=— 72 (1+m)?
]mdf log tan $J = m G+’T e (1+m)? | (255)
T Tog tan 17T L 1+11m |
g logtan sl =" o 0 v mp J

These equations would give the secular changes of J and I, when the solar influence
is very small compared with that of the moon. Of course if G be replaced by g,
they are applicable to the case of small viscosity.

Tt is remarkable that the changes of I are independent of the viscosity ; they depend
in fact solely on the secular change in the permanent ellipticity of the earth.

Iv.

INTEGRATION OF THE DIFFERENTIAL EQUATIONS FOR CHANGES IN THE
INCLINATION OF THE ORBIT AND THE OBLIQUITY OF THE ECLIPTIC.

§ 18. Integration in the case of small viscosily, where the nodes revolve uniformly.

It is not, even at the present time, rigorously true that the nodes of the lunar orbit
revolve uniformly on the ecliptic and that the inclination of the orbit is constant ; but
it is very nearly true, and the integration may be carried backwards in time for a long
way without an important departure from accuracy.
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The integrations will be carried out by the method of quadratures, and the process
will be divided into a series of ““periods of integration,” as explained in § 15 and
§ 17 of the paper on “Precession.” These periods will be the same as those in that
paper, and the previous numerical work will be used as far as possible. It will be
found, however, that it is not sufficiently accurate to assume the uniform revolu-
tion of the nodes beyond the first two periods of integration. For these first two
periods the equations of § 7, Part IL., will be used ; but for the further retrospect we
shall have to make the transition to the methods of Part IIL. It is important to defer
the transition as long as possible, because Part III. assumes the smallness of ¢ and j,
whilst Part 1I. does not do so.

By (104) and (86) of Part II. we have, when j’=0, and £2'/n is neglected,

Y 7/
sin ¢ cos ¢4 (1 —3% sin® j) 477 — -

di__sin 4f,
at— g *

¥ sec ¢ cos j—77'(1—35 sin® ])}

_:‘%@:%@{(1—% sin® ) (4 r2) — 4 (L—£ sin® {)* sin? j

——ng cos ¢ cos 477 sin® ¢(1—3§ smz])}

If we put 1—4 sin® i==cos 4, 1 —% sin® j=cos® j, and neglect sin® ¢ sin? j, these may
be written

cli_sin 4f1

dat ng £

]
= (256)

cos ¢ cos]{72+7'2 Sec]—fzz—l—%‘rr' sin 7 tan ¢ COSzj} J

. , . : . 20 . .
sin ¢ cos © cos.?’y{rz—l-r’2 sec® ) —117'—=—17% sec 1 secgj}
- n

dn  sin 4f

dt~

If we treat sec j and cos j as unity in the small terms in 72, 77, and 2/n, (256)
only differ from (83) of “ Precession” in that du/dt has a factor cos® j and dn/d¢ has
a factor cos j.

Again by (64) and (70)

11 s 221 cos i sin J ]
kdt & g 4 l

, r (257)
1dE_ sindf , . ‘(1 £ ; sec §) i
i g 7 % cos v cos j( —nseczsejJ

If we divide the second of (256) by the second of (257) we get an equation for
dn/d€, which only differs from (84) of “ Precession” in the presence of sec j in place of
unity in certain of the small terms. Now j is small for the lunar orbit; hence the
equation (88) of “Precession” for the conservation of moment of momentum is very
nearly true. The equation is, with present notation,
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L 14 [ —e+25(T) -9+ —-;’—'sim'mm'u—g)]

Ty 0

(lmo +1

.o 2 1 1 1, kny+3 N 1 —E
+l Q000 - (T = I 0 I _1_ 2 ;70 ~0l - 5
a S zno ey + 1<§ 1><.§ kg + 1> 2 sin 7/ vy (Fmg+1)3 Jo kny& > (258)

In this equation we attribute to ¢, as it occurs on the right-hand side, an average
value.

By means of this equation, I had already computed a series of values of 7 corres-
ponding to equidistant values of &

On dividing the first of (256) by the second of (257) we get an expression which
differs from the d log tan® § 7/d¢ of (84) of “ Precession” by the presence of a common
factor cos® j, and by sec j occurring in some of the small terms. Hence we may,
without much error, accept the results of the integration for ¢ in §17 of « Preces:alon

Lastly, dividing the first of (257) by the second, we have

-1
0 ‘ \
‘§<1—% sec 4 seej>

log sin j= (259) -

I

This equation has now to be integrated by quadratures.

All the numerical values were already computed for § 17 of ¢ Precession,” and only
required to be combined.

The present mean inclination of the lunar orbit is 5° 9’, so that Jo=5°9". 1T then
conjecture 5° 12’ as a proper mean value to be assigned to j, as it occurs on the right-
hand side of (259) for the first period of integration, which extends from é=1 to "88.

First period of integration.

From £=1 to ‘88, four equidistaﬁt values were computed.
From the computation for § 17 of ““ Precession” I extract the following.

& = 1 96 92 ‘88
loggsec t+10=859979 8:57309 856411 856746
Then introducing j=5° 12/, I find

¢ = 1 ‘96 92 88

-1
[2§<1—%secisecj>] =+5208 5412 5643 5901



THE ELEMENTS OF THE ORBIT OF A SATELLITE. 813

Combining these four values by the rules of the calculus of finite differences, we
have

1
&4 ='06641
K
2§<1—~ sec 4 secy)
‘88 n

This is equal to log, sin j—log, sin j,. Taking j,=>5° 9’, T find j=5° 30’

Second period of ntegration.

From £=1 to ‘76, four equidistant values were computed.
From the computation for § 17 « Precession,” I extract the following :—

3 = 1 92 ‘84 76

N .
log;sec t+10=28"56746 8:59743 865002 872318

Then assuming 5° 55" as an average value for 7, I find

& = 1 92 84 76

£ . AN
[25(1 — = sect sec]ﬂ =-5193 5660 6232 ‘6948

Combining these, we have

1
S € —-14345

2§<1 L sec ¢ secj>
16 7

This is equal to log, sin j—log, sinj,. Taking j,=>5° 30" from the first period, we
find j=6° 21".

This completes the integration, as far as it is safe to employ the methods of Part II.

In Part IIL it was proved that, in the case where the nodes revolve uniformly,
equations (224) reduce to those of Part IL. But it was also shown that what the
equations of Part IT. really give is the change of the inclination of the lunar orbit to
the lunar proper plane ; also that the equations of ““ Precession ” really give the change
of the inclination of the mean equator (that is of the earth’s proper plane) to the
ecliptic.

MDCCOLXXX, 5 M
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The results of the present integra,tidn are embodied in the following table, of which
the first three columns are taken from the table in § 17 of * Precession.”

Tapie L

Sidereal . Moon’s sidereal Inclination of Inclination of
’hl ereal day in m.s. period in m.s. mean equator to | lunar orbit to lunar

ours and minutes. days. ecliptic. proper plane.

. h. m. Days. ° , ° ;
Initial 23 56 2732 23 28 5 9

15 28 18-62 20 28 5 30

Final 9 55 817 17 4 6 21

We will now consider what amount of oscillation the equator and the plane of the
lunar orbit undergo, as the nodes revolve, in the initial and final conditions represented
in the above table.

It appears from (119) that sin 2j oscillates between sin 2j,4-a sin 2i,/(k,+«), and
that sin 27 oscillates between sin 24,4-(x,+a) sin 2j,/a, where 7, and j, are the mean
values of ¢ and j. ~

With the numerical values corresponding to the initial condition (that is to say in
the present configurations of earth, moon, and sun), it will be found on substituting in

N\ 9 7
(115) and (112), with a,=2 <‘%> <1—%%>[2 instead of simply %%, that

a='341251, 8=-000318, a="000059, b="000150,

when the present tropical year is the unit of time.
Since 4ab is very small compared with («—p)?, it follows that we have to a close
degree of approximation
K==—0, k=—L0

Then since (k,~+a)/a=Db/(k,+B), 1t follows that sin 2j oscillates between
sin 2jy+a sin 27,/(e—B), and sin 2¢ between sin 2¢,FDb sin 2j,/(a—p).

Let & and & be the oscillations of j and ¢ on each side of the mean, then
8 sin 2j=a sin 2¢/(a—p) and 8 sin 2¢=D sin 2j/(e—B).

Hence in seconds of arc

53 048000 ) @ sin2i
I=T7 *a—pB cos 2 ]
(260)

648000

S; 3 b sin2

7  2a—B cos2i
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Reducing these to numbers with j=5° 9, 1=23° 28. we have §=18"13,
di=11"7-86.% .

Hence, if the earth were homogeneous, at the present time we should have § as the
inclination of the proper plane of the lunar orbit to the ecliptic, and & as the amplitude
of the 19-yearly nutation. These are very small angles, and therefore initially the
method of Part II. was applicable.

* The formulas here used for the amplitude of the 19-yearly nutation and for the inclination of the
lunar proper plane to the ecliptic differ so much from those given by other writers that it will be well to
prove their identity.

Laprace (*Mée. CéL., liv, vii., chap. 2) gives as the inclination of the proper plane to the ecliptic

ap—gap D? sin A cos M
g—1 a?

Here «p is the earth’s ellipticity, and is my ¢; «¢ is the ratio of equatorial centrifugal force to gravity,
and is my »?a/g, it is therefore £¢ when the earth is homogeneous.

Thus his ap—4az¢p= my 2e. His g—1 is the ratio of the angular velocity of the nodes to that of the
moon, and is therefore my (»—pg)/f2. His D is the earth’s mean radius, and is my a. His ¢ is the moon’s

e

a® . . .
— sinzcost

mean distance, and is my ¢. His X is the obliquity, and is my 7. Thus his formula is 2 32
c

in my notation.

Now my r=3um/2¢% and 2a?=C/M.
Therefore the formula becomes

But by (5) Ce/uMm=Ek.

Therefore it becomes

Now by (115) and (112), when §=1, a=Fkre cos j cos 2.
Therefore in my notation Larrace’s result for the inclination of the lunar proper plane to the ecliptic is

1 ,._i_ ELQZ sec
22— cos 2f J

This agrees with the result (260) in the text, from which the amount of oscillation of the lunar orbit
was computed, save as to the sec j. Since j is small the discrepancy is slight, and I believe my form to
be the more accurate. )

Laprack states that the inclination is 20023 (centesimal) if the earth be heterogeneous, and 41470
(centesimal) if homogeneous. Since 41'°470 (centes.)=13""44, this result agrees very closely with mine.
The difference of LiaPLACE’S data explains the discrepancy.

If it be desired to apply my formula to the heterogeneous earth we must take & of my %, because the
2 of the formula (6) for s will be replaced by 1 nearly. Also ¢ which is 315, must be replaced by the
precessional constant, which is ‘003272. Hence my previous result in the text must be multiplied by
2 of 232x°003272 or ‘6326. This factor reduces the 13"-13 of the text to 8'-31. LAPLACE'S result
(207023 centes.) is 6"°49. Hence there is a small discrepancy in the results; but it must be remembered
that LAPLACE’S value of the actual ellipticity (1/334 instead of 1/295) of the earth was considerably in
error. The more correct result is I think 8":31. The amount of this inequality was found by Bure and

b M 2
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Now consider the final condition.
Since the integrations of the two periods have extended from £=1 to ‘88, and again
from =1 to ‘76,

r=1,("88 X 76)70, 2=12,(88 X 76)~, h=Fk,(*88 X ‘76)~,

also the value of 7 which gives the day of 9 hrs. 55 m. is given by log n=374451, and
log g+10=121217, when the year is the unit of time.

We now have t=17° 4/, j=6° 21".

Using these values in (115) and (112), I find

a="10872, B="00627, a="00563, b="00510.

ab is still small compared with («—g@), but not negligeable.
Then by (117)

Ky —Ky="—4/ (a—,@)2+4a]5=—(a—,8)—;2%, also Ky +ry=—(a+pB)

Now 2ab/(e—B)="00056.
Hence we have
K+ Kry=—"11499 | whence k;=—"10900

Ky —kKy=—"10301 Ky=—"00599

BurckuARDT from the combined observations of BranLey and MASKELYNE to be 8 (Grant’s ¢ Hist. Phys.
Astr.,” 1852, p. 65).
For the amplitude of the 19-yearly nutation, Airy gives (‘ Math. Tracts,” 1858, article “ On Precession
and Nutation,” p. 214)
6B 7 s Tein2s
T2uw(nt 1) dr
B is the precess. const. = my ¢; his T'= my 2/f2; his n= my v; his w= my «; his I= my ; his i= my j;
and his 7 is the period of revolution of the nodes, and therefore = my 27 /(a— ).
Then since my r=342?/2(1+ ), the above in my notation is
1 78 1

5= cos ¢ sin 2)
na—f3

Now by (115) and (112) b=;’_: cos 7 cos 27, when g=1.

Therefore his result in my notation is
1 b sin2j

g —

a—f3 cos 24

This is the result used above (in 260) for computing the nutations of the earth.

If my formula is to be used for the heterogeneous earth, ¢ must be replaced by the precessional constant,
and therefore the result in the text must be multiplied by 232 x ‘003272 or *759. Hence for the hetero-
geneous earth the 11'-86 must be reduced to 9*01. AIrY computes it as 1033, but says the observed
amount is 9"°6, but he takes the precessional constant as ‘00317, and the moon’s mass as 1-70th of that
of the earth. I believe that 00327 and 1-82nd are more in accordance with the now accepted views of
astronomers.
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x; and x, have now come to differ a little from —a and —f, but still not much.
With these values I find

a —b

log x2+a+10=8"76472, log K1+B+10=8-69606
Substituting in the formulas
oi 9
3j=% a sin 2¢ Si=1 b sin 2y

3 1= .
Kky+a cos 25° %k, 4B cos 2

I find
§=>57" 81", &i=22 42"

Thus the oscillation of the lunar orbit has increased from 138" to nearly a degree,
and that of the equator from 12” to 28"

It is clear therefore that we have carried out the integration by the method of
Part IL., as far back in retrospect as is proper, even for a speculative investigation
like the present one.

We shall here then make the transition to the method of Part ITL.

Henceforth the formulas used regard the inclination and obliquity as small angles ;
the obliquity is still however so large that this is not very satisfactory.

§ 19. Secular changes in the proper planes of the earth and moon where the viscosity
ts small.

We now take up the integration, at the point where it stops in the last section, by
the method of Part ITI. The viscosity is still supposed to be small, so that vy, §, g, d
(as defined in (251)) must be taken in place of T, A, G, D, which refer to any viscosity.
The equations are ready for the application of the method of quadratures in (250), and
the symbols are defined in (251-4).

The method pursued is to assume a series of equidistant values of ¢ and then to
compute all the functions (251—4), substitute them in (250), and combine the equi-
distant values of the functions to be integrated by the rules of the calculus of finite
differences.

The preceding integration terminates where the day is 9 hrs. 55 m., and the moon’s
sidereal period is 8'17 m.s. days. If the present tropical year be the unit of time, we
have, at the beginning of the present integration log n,=374451, log 2,=2"44836,
and log k+10=620990, k being s, of (7).

The first step is to compute a series of values of 1/n,, by means of (254). Asa fact,
I had already computed 7/n, corresponding to £=1, ‘92, ‘84, '76 for the paper on
“ Precession,” by means of a formula, which took account of the obliquity of the ecliptic ;
and accordingly T computed n/n,, by the same formula, for the values of é=96, 88, "80,
instead of doing the whole operation by means of (254). The difference between my
‘results here used and those from (254) would he very small.
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The following table exhibits some of the stages of the computation. The results are
given just as they were found, but it is probable that the last place of decimals, and
perhaps the last but one, are of no value. As however we really only require a solution
in round numbers, this is of no importance.

Tasre 1I.
£ =| 1 96 92 88 84 80 76
nfng= 1:00000 104467 1:08931 1-13392 117852 122308 126763
log ¢e+10= 840016 843812 847446 8:50932 8:54284 857507 360614
log 7' [7+10= 8:61867 8:51230 840140 828557 816435 8:03721 790356
log A4 10= 870384 873805 877533 8:81581 8:85966 890712 8:95841
[2xr=| 16:3546 10-8418 7:0889 4-5647 2:8895 17947 1:0914
m=a= 90035 97976 1:06603 1:16014 1-26320 1-37648 1-50172
log y+10= 9:67591 9:71452 975343 979287 983307 9-87430|  9-91693
log 64+10= 9:65551 965745 965824 965788 965631 965341 9:64900
log (gh—ad)+10=| 883030 8:86665 8:91307 896946 903549 9-11080 919510
a=| 36696 23-186 12:583 4144 |— 2747 |— 8605 |—13873
a'=|— 74782 |— 86811 |[—10'0883 |—11'7426 |—13:6966 |—160163 |—18-7899
'= |— 64455 |— 6:9122 |— 74220 |— 79805 |— 85940 |— 92699 [—100184
b'=|— 64038 |— 6:8796 |— 73968 |— 79612 |— 85794 — 92590 |—100104
log —(x;+a)+10= 874306 8:95453 916587 937077 955751 971146 982404
log (ky+a) 1-21135 1:03659 ‘86190 69374 54396 | 42731 35255
log (kg—xy) 121283 | '1:04017 ‘87056 71393 58660 50872 46520

The further stage in the computation, when these values are used to compute the
several terms of the expressions to be integrated, are given in the following table.

Tasre I11.

£ = 1 ‘96 92 ‘88 ‘84 ‘80 76
— (' — By + &) Tn(ig—rP= | -00995| -02395| 05424 | -10413| -13350| -03053|— -26438
a'b(e, + a)fkn(eg+a)(kg—r)P= | -00011| -00064| -00876| -02041| -08937| -27505| 57228
a'b/lkn(xg— k) )?= | —-03117 | —-07671 | — 18670 | — 42945 | — 86628 | —1-42975 |—1-93250
ba(i; +a)/kn(cg+a)(kg—r = | -00008| -00049| -00294| -01606| -07072| -21887| 45786
b'afln(kg—i;)P= | — 02403 | —05970 | — 14593 | —'33778 | —68546 —1:18770 | —1-54610
ty(;c1+a)/kn(:c2—-:c1)= —00179 | —-00452 | —+01141 | —-02759 | — 06001 |— 10969 |— ‘16534
(gt a)fln(y— )= | 52483 | -54645| -56651| 58035 -58167| 57020| 55832
iyt a)ln(kg—ry)= | —+00170 | —-00397 | — 00916 | —-02022 | —-03995 |— 06596 |— 08922
iy + a)/len((sey— 1)) = 50075 47916 45501 *42530 38719 34288 -30127
(bg—ad)/kn(xy— k)= 00460 ‘00713 ‘01124 01764 02649 03675 04704
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The method pursued in the integration of the preceding section proceeds virtually
on the assumption that the term y(x,+a)/kn(k,—«;,) is the only important one in the
expression for d log tan 3J/d¢, and that the term 8(ky+a)/kn(k,—x,) is the only
important one in the expression for d log tan 3I/d¢.

Now when =1, at the beginning of the present integration, we see from Table ITI.
that the said term in y is about 22 times as large as any other occurring in d log tan 1J,
and that the said term in & is about 16 times as large as any other which occurs in
d log tan 3I. Hence the preceding integration must have given fairly satisfactory
results. But after the first column these terms in ¢ and 8 fail to maintain their rela-
tive importance, so that when §='76, they have both become considerably less im-
portant than other terms—notably b'a/kn(x,—«,)* and a’b/kn(k,—x,)%. This is exactly
what is to be expected, because the equations are tending towards the form which
they would take if the solar influence were nil, and an inspection of (225) shows that
these terms would then be prominent.

Now if we combine these values-of the several terms together according to (250),
we obtain the seven equidistant values of d log tan 4J/d¢ and d log tan 11/d¢ exhibited
in the following table :—

TasLE IV,
e =] 1 96 92 ‘88 84 80 76 t
dlog tan JJ/dg= | —49386 | —-46660 | —-37218 | —15627 | + -16138 | + -35210 | + -19330
Qlog tan §Ijdi= | +754460 | 458104 | +69284 | +-93287 | +1-28273 | +1-51185 | +1-39323

By interpolation it appears that dJ/d¢ vanishes when £='8603. This value of ¢
corresponds with 8 hrs. 36 m. for the period of the earth’s rotation, and 5°20 m. s. days
for the period of the moon’s revolution.

Since d¢ is negative in our integration, we see from these values that I, the inclina-
tion of the earth’s proper plane to the ecliptic, will continue diminishing, and with
increasing rapidity. On the other hand, the inclination J of the lunar orbit to its
proper plane will increase at first, but at a diminishing rate, and will finally diminish.
This is a point of the greatest importance in explaining the present inclination of the
lunar orbit to the ecliptic, and we shall recur to it later on.

Now combine the first four values by the rule of finite differences, viz.:

[0+ us+3(uy +uy) 135
and all seven by WEDDLE's rule, viz.:
[0+ vg gyt 5(uy +ug+u,) i

where % is our d§, and the u’s are the several numbers given in the ahove Table IV.;
then we have, on integration from 1 to '88,
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log, tan 4J = log, tan 1J,404750
log, tan 31 = log, tan 31, —"07953
and on integration from 1 to 76
log, tan 1J= log, tan LJ,4-02425
log, tan 11 = log, tan 41, —-23972

Then if we take J,;=6° I,=17°, which are in round numbers the final values of J
and I derived from the first method of integration, we easily find,

when &="88, J=6° 17/, T=15° 43/
and when é=76, J=6° 9", I=13° 25’

Then we have by (249)

. K tea) . .
sin I,=—-(-1-——) sin J= sin J
a Ky
. a . K, +o .
sin J,= sin [=—-2-—gin I
Kot b

Now b is always unity, and the logarithms of (k,+a) and —(x,+a) are given in
Table I1.; from this we find

when ¢="88,1=1° 16/, J =3° 39’
when é="76, I =2° 43", J =8° 54’

By the same formula, when ¢=1 initially, we have I =22', J =56". These two
results ought to be identical with the results from (260) of the last section; and they
are so very nearly, for at the end of the integration we had &1=22" 43", §/=57" 31".
The small discrepancy which exists is partly due to the assumed smallness of 7 and j in
the present investigation, and also to our having taken the values 6° and 17° for J,
and I, instead of 6° 21/, 17° 4.

The value {=188 gives the length of day as 8 hrs. 45 m., and the moon’s sidereal
period as 5'57 m. s. days.

The value £='76 gives the day as 7 hrs. 49 m., and the moon’s sidereal period as
359 m. s. days. This value of ¢ brings us to the point specified as the end of the
third period of integration in § 17 of the paper on “ Precession.”

There is one other point which it will be interesting to determine,—it is to find the
rate of the precessional motion of the node of the two proper planes on the ecliptic,
and the rate of the motion of the nodes of the equator and orbit upon their respective
proper planes. By means of the preceding numerical values, it will be easy to find
these quantities at the epochs specified by é=1, ‘88, ‘76.
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The period of the precession of the two proper planes is —2/k,, and that of the
precession of the two nodes on their proper planes is 27/(x,— ;).

In the preceding computations we omitted a common factor 7¢/n from e, B, a, b,
Ky, ko3 this factor must now be reintroduced. 7° is a constant and log ¥=177242,
then by means of the numerical values given in the first table I find

3 = 1 ‘88 76
log 7¢/n4-10=7"80940 8:19708 862750
Also
log —Kky,+10=9"99401 9'89462 9:53295

log (ky—k,) is given before in Table II. Then introducing the omitted factor 7¢/n,
I find

E =1 38 76
— 2m/k,=988 yrs. 509 yrs. 434 yrs.
27/(ky—K;)= 60 yrs. 77 yrs. 51 yrs.

Thus both precessional movements on the whole increase in rapidity (because of the
increasing value of 7¢/n), but the rate of the precession of the pair of proper planes
increases all through, whilst that of the precession on the proper planes diminishes
and then increases. It was pointed out towards the end of § 13 that «, is, so to speak,
the ancestor of the luni-solar precession, and x,—«, the ancestor of the revolution of
the moon’s nodes. Hence the 988 years has bred (to continue the metaphor) the
present 26,000 years of the precessional period, and the 60 years has bred the present
18% years of the revolution of the moon’s nodes.

We see that the k,—«; precession attains a minimum at a certain period being more
rapid, both earlier and later.

All the above results will be collected and arranged in a tabular form, after further
results have been obtained by means of an integration, carrying out the investigation
into the more remote past.

The tidal and precessional effects of the sun’s influence have now become exceedingly
small, and the only way in which the sun continues to exert a sensible effect is in its
tendency to make the nodes of the lunar orbit revolve on the ecliptic. In the analysis
therefore we may now treat 7 as zero everywhere, except where it occurs in the form
7’/\er.  Since N and ¢ are both pretty small, these terms in 7'/r rise in importance.

The equation of conservation of moment of momentum now becomes

n 1
7'70:1_!_75770(1—5)

Here kn, is equal to the value of nv in the preceding integration when é='76; and
hence 1/kny="665903. |

Then we now have B=b, y=g, 8=d, B'=V’, y'=g’, 8'=d’, but « and &’ are not
equal to a and a’.

MDCCCLXXX. 5 N
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It is proposed to carry the new integration over the field defined by é=1 to ‘88,
and to compute four equidistant values.
The following tables give the results of the computation, as in the previous case.

TasLe V.
¢ = 1 96 92 88

n/ny= 1:00000 102664 105327 1-07991
log ¢4+10= 860614 862898 865122 867292
log /r4-10= 790356 779718 768628 757045
log \+10= 895841 9:00018 904451 909157
log 7’1/2)\27+10= 10°03798 9:86699 9:68952 950493

—=a= 1-5017 16060 171938 1-:8429
10g' g+10= ’ 991693 995049 998531 10°02170
log d410= 965322 964780 964118 963303

o'= | —13873 —17-719 —21°607 —25°692

a’'= | —18790 —21'266 —24-130 —27°460

B'=b'= | —10010 —10636 —11:316 — 12057
log—(:c1+oc)+10= 9-82285 9:88247 9-92401 995203
log (ky+ex)+10= 35374 32327 31133 31347
log (ky—K;)+10= 46586 45758 146052 47035

TasLe VL

& = 1 ‘96 92 88
— (& =Byt ) fhn(ig—r o= | — 1998 | — 4261 | — 6551 | — ‘8630
a’b(k; + &) /kn(xy+ o) (k,— K, )’ = 4312 ‘6077 ‘7500 8445
abfkn(y—i)'= | —14643 | —1:6770 | —1:8297 | —19410
b'a(k, ) /kn(ky+ o) (ky— i, )= 3450 4882 6047 ‘6833
Wa/kn(g—i = | —11714 | —1:3469 | —1:4752 | —15706
g(ki+a)/kn(ky—r))= | — ‘1251 | — 1540 | — 1777 | — 1965
o(iyt-0t) [l (1cy— c,) = 4248 4248 4335 4517
d(k,+a)/kn(ky—r))= | — ‘0682 | — 0767 | — 0805 | — 0803
Ayt e2) [l sey— iey) = 2315 2116 1963 1846
(bg—ad)/kn(ky—x,)= 0342 0404 "0469 ‘0542
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Combining these terms according to the formulas (250), we have

Tasre VIL
& = 1 ‘96 ‘92 88
dlogtan 3J/dé= | + ‘1496 | —-0754 | —-3298 | —'5625
dlogtan 3I/dé= | 41:0601 | 48607 | 46354 | 44370

By interpolation it appears that dJ/d¢ vanishes when §=:9679. This value of &
corresponds with 7 hrs. 47 m. for the period of the earth’s rotation, and 3825 m. s. days
for the period of the moon’s revolution.

By the rules of the calculus of finite differences, integrating from é=1 to 88,

log, tan £J = log, tan 3J,+-0244
log, tan 3I= log, tan 1I,—-0898

Then with J,=6°9’, I;=138° 25’ from the previous integration, we have J=6° 18,
I=12°16".

When £="88, the length of the day is 7 hrs. 15 m., and the moon’s sidereal period
is 2°45 m.'s. days. Also I =38°38’, J,=10° 58".

Thus we have traced the changes back until the inclination of the proper planes to
one another is only 12° 16'—10° 58" or 1° 18".

In the same way as before it may be shown that, when £=88, the period of
the precession of the proper planes is 609 years, and the period of the revolution of the
two nodes on their moving proper planes is 22 years. The former of the two preces-
sions is therefore at this stage getting slower, whilst the latter goes on increasing in
speed.

The physical results of the whole integration of the present section is embodied
in the following table.

TasLE VIIL—Results of integration in the case of small viscosity.

Moon’s | Inclination| Inclination | Inclination| Inclination |p ssional Period of

Day in . do on Sl of earth’s | of equator | of moon’s |oflunarorbit :QO do £ revolution of
m. 8. hours s1r_er£af proper | to earth’s | proper to moon’s tgem v o the two nodes

and min. | POOC 1 plane to proper plane to proper PYOPEr | on their moving

m. s. days. ki .. ) planes. -
ecliptic. plane. ecliptic. plane. proper planes.

h. m. Days. o , R , R , o , Years. Years.

9 55 817 17 0] 0 22 0 57 6 0 988 60

8 45 557 15 43| 1 16 3 39 6 17 509 7

7 49 359 13 25| 2 43 8 54 6 9 434 51

7 15 245 12 16 | 3 3 | 10 58 6 18 609 22

S N2



824 MR. G. H. DARWIN ON THE SKCULAR CHANGES IN

If the integration is to be carried still further back, the solar action may henceforth
be neglected, and the motion may be referred to the invariable plane of the system.
This plane undergoes a precessional motion due to the sun, which will not interfere
with the treatment of it as though fixed. It is inclined to the ecliptic at about
11° 45, because, at the time when we suppose the solar action to cease, the moment
of momentum of the earth’s rotation is larger than that of orbital motion, and therefore
the earth’s proper plane represents the invariable plane of the system more nearly than
does the moon’s proper plane.

The inclination ¢ of the equator to the invariable plane must be taken as about 3°,
and j that of the lunar orbit as something like 5° 30". The ratio of the two angles
5° 80" and 3° must be equal to 1-84, which is 0¥, the ratio of the moment of momentum
of the earth’s rotation to that of orbital motion, at the point where the preceding
integration ceases.

Then in the more remote past the angle ¢ will continue to dlmlmsh, until the point
is reached where the moon’s period is about 12 hours and that of the earth’s rotation
about 6 hours. The angle j will continue increasing at an accelerating rate.

This may be shown as follows :—

The equations of motion are now those of Part II., which may be written

kn;lg“ —g(i+)

kn%— d(z+y)

But since ¢/j=¢/kn=1/m, they become

1 it
fn . g log tan 4j= -~-~‘ 58
knm log tan Jv= (14-m)d

d

(Compare with the first of equations (255) given in Part ILI., when /=0.)

These equations are not independent, because of the relationship which must always
subsist between ¢ and j.

Then substituting from (251) we have for the case of small viscosity

_lm
21—

(1 + (L —20)
i U Al —2A)
fen o JE 100‘ tan L= 21—

lm e log tan Lj=



THE ELEMENTS OF THE ORBIT OF A SATELLITE. 825

From this we see that j will always decrease as £ increases at a rate which tends to
become infinite when A=1; and ¢ increases as ¢ increases so long as \ is less than 5,
but decreases for values of N between *5 and unity at a rate which tends to become
infinite when A=1. If we consider the subject retrospectively, & decreases, j increases,
and 7 decreases, except for values of \ between 5 and unity.

This continued increase (in retrospect) of the inclination of the lunar orbit to the
invariable plane is certainly not in accordance with what was to be expected, if the
moon once formed a part of the earth. For if we continued to trace the changes back-
wards to the initial condition in which (as shown in “ Precession”) the two bodies
move round one another as parts of a rigid body, we should find the lunar orbit inclined
at a considerable angle to the equator ; and it is hard to see how a portion detached from
the primeval planet could ever have revolved in such an orbit.

These considerations led me to consider whether some other hypothesis than that of
infinitely small viscosity of the earth might not modify the above results. I therefore
determined to go over the same solution again, but with the hypothesis of very large
instead of very small viscosity of the planet.

This investigation is given in the next section, but I shall not retraverse the ground
covered by the integration of the first method, but shall merely take up the problem
at the point where it was commenced in the present section.

§ 20. Secular changes in the proper planes of the earth and moon when the
viscosity s large.

Let p=2 gaw [19v, where v is the coefficient of viscosity of the earth.
Then by the theory of viscous tides

tan 2f =2(n—~fl)

0 n—240 n
, tan 2f=— tan g,=—, tang=- . . . (261
P 81 P g P (261)

If the viscosity be very large p is very small, and the angles lm—2of,, Llr—2f
sm—g,, m—g are small, so that their cosines are approximately unity and their sines
approximately equal to their tangents. Hence

maf= gna=? n2e === gnoo=2P
sin 4f1_n—-!2’ sin 4f'_n, sin Zgl.—n_m, sin 2g= -
Then introducing A=12/n, we have
sin 4f . sin 23, 2(1—=X\) sin2g .
sindf, 7 sindf, T 1—2\7 sin4f1"“2(1"')‘) coe e (202)

Introducing the transformations (262) into (251), we have
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r=tm 1= a= i 1+ T+ T (263)

=) -
bG—-aD_—-m[———l_m —2(1—-N)7

All the other expressions in (251) remain as they were.

Then the terms in I, A, G, D in (250) are the only ones which have to be recomputed.
And all the other arithmetical work of the last section will be applicable here. Also
all the materials for calculating these new terms are ready to hand.

The results of the computation are embodied in the following tables.

Tasre IX.

£ = 1 96 92 ‘88 "84 -80 76

logT+10= | 9-54901 | 957529 | 9:59914 | 9:61994 | 963663 | 964791 | 965092
log A= | 52876 55517 *58023 60484 63005 65708 68739
log (aD—bG)+10= | 908381 | 922356 | 934416 | 945433 | 9-55931 | 9:66259 I 976574

TasLe X.
£ = 1 ‘96 92 88 84 80 76
F(K1+u)/]£n(xg~xl)= -~+00133 | —00328 | —*00800 | —-01853 | —+03818 | —*06513 | — 08961
T(xy+a) /lm(:cg— K)= 39185 -39657 39712 38973 37003 33856 30260
A(K1+a)/kn(x2—/cl)= —:00199 | —00485 | —-01168 | —*02688 | —05553 | —-09627 | —-13761
Alkg+ a)/ln(ig—r))= 58529 +58541 57994, 56554 53826 50044 46468
_ (bG—aD)/ln(kyg—r))= | —-00825 | —-01622 | —-03034 | —'05388 | — 08850 | —-13092 | —-17504

Then combining these terms with those given in Table IIL, according to the

formulas (250), (with T, &c., in place of y, &c.), we have the following equidistant
values.

Tapre XL
P = 1 96 92 83 -84, ‘ 80 76
log tan 3J/dg= | —-8477 | —2025 | —-1587 | + ‘1125 | + 5036 | + 7818 | + 7195
log tan 41/dg= | +6168 | +6661 | +7796 | +1:0107 | +1-3406 | +1-5458 | +1-4103

By interpolation it appears that dJ/d€ vanishes when §='8966. This value of ¢
corresponds with a period of 8 hrs. 54 m. for the earth’s rotation, and 5:89 m. s. days
for the moon’s revolution.
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Integrating as in the last section, from =1 to '88, we have

log, tan 3J = log, tan 4J,-4"0238
log, tan I = log, tan £I,—-0895

Taking I,=6°, J,=17°, we have I=15° 34", J=6°9".

These values correspond to I,=1° 15, J,=38° 37".
Again integrating from £=1 to '76, we have

log, tan $J=log, tan {J,—-0461
log, tan £I =log, tan 41, —-2552

These give J=5° 44’, I=13° 18/, which correspond to I,=2° 33’, J,=8° 46".

827

The integration will now be continued over another period, as in the last section.
The following are the results of the computations.

TasLe XII.
I3 = 1 ‘96 ‘92 ‘88
log (I‘:G)—|—10= 965092 9:64491 962783 | 9:59299
log (A=D)4-10= | 9:84629 | 9:86040 | 9'87686 | 9:89622
Tasre XIII.
¢ = 1 96 92 88
G(k,+o)/kn(ky—r,)= | —"06781 | —*07617 | —'07802 | —'07323
G(kg+o)/kn(k,—k)= | 23026 | 21018 | ‘19033 | 16832
D(x,4a)/kn(xy;—r)= | —'10634 | —12511 | —'13843 | — 14720
D(xy4a)/kn(kcy—r)= | 36106 | 34521 | 33771 | -33835
(bG—aD)/kn(k,—k)= | —'13815 | —'16352 | —*19057 | —'35054

Substituting these values in the differential equations (250), we have the following

equidistant values :~—
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TasLe XIV.
& = | 1 ‘96 ‘92 ‘88
dlogtan 3J/dé= |+ ‘5547 | 43915 | 42088 | 41925
dlog tan 31/dé= | +1'0746 | 48682 | 46391 | +°3093

‘Then integrating from é=1 to ‘88 we have

log, tan {J=log, tan 1J,—"0382
log, tan I =log, tan 41,—"0886

Then putting I,=18° 18’ and J,=5° 44, from the previous integration, we have
J=5°30", I=12° 6.
These values of J and I give J,=10° 49", T =2° 40"

The physical meaning of the results of the whole integration is embodied in the
following table.

TapLE XV.—Results of integration in the case of large viscosity.

Day in m.s Moon’s Inclination of | Inclination of | Inclination of | Inclination of
[ . earth’s equator moon’s lunar orbit
hours aud | sidereal period proper plane | to earth’s | proper plane | to moon’s

minutes. | in m.s. days. | "4, ecliptic. | proper plane. | to ecliptic. | proper plane.
h. m. Days. o , o . o , o .
9 55 817 17 0 0 22 0 57 6
8 45 557 15 34 1 15 3 37 6

‘ 7 49 359 18 13 2 33 8 46 5 44
7 15 2:45 12 6 2 40 10 49 5 30

If we compare these results with those in Table VIII. for the case of small viscosity,
we see that the inclinations of the two.proper planes to one another and to the ecliptic
are almost the same as before, but there is here this important distinction, viz. : that
the inclinations of the two moving systems to their respective proper planes is less
(compare 5° 80" with 6° 18’, and 2° 40" with 3° 8').

And besides, if we had carried the integration, in the case of small viscosity, further
back we should have found the inclination of the lunar orbit increasing.

Tt will now be shown that, in the present case of large viscosity, the inclinations of
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the equator and the orbit to their proper planes will continue to diminish, as the square
root of the moon’s distance diminishes, and at an increasing rate.

Suppose that, in continuing the integration, the solar influence be entirely neglected,
and the motion referred to the invariable plane of the system. This plane will be in
some position intermediate between the two proper planes, but a little nearer to the
earth’s plane, and will therefore be inclined to the ecliptic at about 11° 45,

The equations of motion are now those of § 10, Part II., which may be written

lmjg —G(e+y)

lm :”— D(¢47)

But since 1/j=¢/kn=1/m, they become

1+m
nc‘ff log tan 3 j = — "'ni"G

Ln—glogtan Li= (14+m)D

(compare with the first of equations (255) given in Part IIL., when 7"=0).

These equations are not independent of one another, because of the relationship
which must always subsist between ¢ and j.

Then substituting from (263) (in which 7’ is put zero, and G D written for T, A)
we have for the case of large viscosity

(1N
knd—f log tan 3j=—%(1+m) [1_ 7;( 2)»)}
— — AMn(1=2)
kn T log tan 41= 4(1+4+m) [1+ T o ]

When A=3, 4M(1—\)/(1—2)) is infinite, and therefore both dj/d¢ and di/d¢ are
infinite. This result is physically absurd.

The absurdity enters by supposing that an infinitely slow tide (viz.: that of speed
n—20) can lag in such a way as to have its angle of lagging nearly equal to 90°.
The correct physical hypothesis, for values of A nearly equal to &, is to suppose the
lag small for the tide n—242, but large for the other tides. Hence when \ is nearly
=1, we ought to put

2(n—20)
p

. 2p o
o S 2g=7"5 but sin 2g,=

MDCCCLXXX. 5 0

sin 4f, = F
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Then we should have

2n?
G=l~m[1+2(1—>\)——p;(1—->\)(1—2x)]
PN TN
D=§[1 2(1-N)+5 (1= 2>\)}

The last term in each of these expressions involves a small factor both in numerator
and denominator, viz.: 1—2\ because =% nearly, and P, because the viscosity is
large. The evaluation of these terms depends on the actual degree of viscosity, but
all that we are now concerned with is the fact that when A=4% the true physical result
is that D changes sign by passing through zero and not infinity, and that G does the
same for some value of \ not far removed from 1.

Now consider the function 47;(}__2_;\)— 1. The following results are not stated retro-

spectively, and when it is said that ¢ or j increase or decrease, it is meant increase or
decrease as ¢ or £ increases.

(i.) From A=1 to A\="5 the function is negative.

Hence for these values of A the inclination j decreases, or zero inclination is
dynamically stable.

When A="5 it is infinite ; but we have already remarked on this case.

(L) From A="5 to A="191 it is positive.

Therefore for these values of N the inclination j increases, or zero inclination is
dynamically unstable. It vanishes when A="191.

(iii.) From A=-191 to A=0 it is negative.

Therefore for these values of N the inclination j decreases, or zero inclination is
dynamically stable.

A(1—N)
1-2a°
(iv.) From A=1 to A="809 it is positive.
Therefore for these values of N the obliquity ¢ increases, or zero obliquity is
dynamically unstable. It vanishes when A="809.
(v.) From A=1809 to A="5 it is negative.
Therefore for these values of N the obliquity ¢ decreases, or zero obliquity is
dynamically stable.
‘When A="5 it is infinite ; but we have already remarked on this case.
(vi.) From A="5 to A=0 it is positive.
Therefore for these values of A the obliquity ¢ increases, or zero obliquity is
dynamically unstable.

Next consider the function 14
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Therefore from A=1 to ‘809 the inclination j decreases and the obliquity ¢
increases.

From A="809 to *5 both inclination and obliquity decrease.

From A="5 to "191 both inclination and obliquity increase.

From A="191 to 0 the inclination decreases and the obliquity increases.

Now at the point where the above retrospective integration stopped, the moon’s
period was 2:45 days or 59 hours, and the day was 7-25 hours ; hence at this point

=123, which falls between ‘191 and ‘5. Hence both inclination and obliquity
decrease retrospectively at a rate which tends to become infinite when we approach
A="5, if the viscosity be infinitely great. For large, but not infinite, viscosity the
rates become large and then rapidly decrease in the neighbourhood of A="5.

‘From this it follows that by supposing the viscosity large enough, the obliquity
and inclination may be made as small as we please, when we arrive at the point
where A="5.

It was shown in § 17 of ¢ Precession” that A='5 corresponds to a month of
- 12 hours and a day of 6 hours. |

Between the values A="5 and ‘809 the solutions for both the cases of small and of
large viscosity concur in showing zero obliquity and inclination as dynamically stable.
But between A="809 and 1 the obliquity is dynamically unstable for infinitely large,
stable for infinitely small viscosity ; for these values of A zero inclination is dynamically
stable both for large and small viscosity.

From this it seems probable that for some large but finite viscosity, both zero
inclination and zero obliquity would be dynamically stable for values of A between ‘809
and unity.

It appears to me therefore that we have only to accept the hypothesis that the
viscosity of the earth has always been pretty large, as it certainly is at present, to
obtain a satisfactory explanation of the obliquity of the ecliptic and of the inclination
of the lunar orbit. This subject will be again discussed in the summary of Part VII,

§ 21. Graphical illustration of the preceding integrations.

A graphical illustration will much facilitate the comprehension of the numerical
results of the last two sections.

The integrations which have been carried out by quadratures are of course equivalent
to finding the areas of certain curves, and these curves will afford a convenient illus-
tration of the nature of those integrations.

In §§19, 20 two separate points of departure were taken, the first proceeding from
é=1 to 76, and the second from é=1 to '88. It is obvious that & was referred to
different initial values ¢, in the two integrations.

502
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In order therefore to illustrate the rates of increase of logtan 3J and log tan 11 from
the preceding numerical results, we must either refer the second sets of €’s to the same
initial value ¢, as the first set, or (which will be simpler) we may take ,/c as the
independent variable.

Then for the values between £=1 and ‘76, the ordinates of our curves will be the
numerical values given in Tables IV. and XI., each divided by 4/¢,. By the choice of
a proper scale of length, ¢, may be taken as unity.

For the values in the second integration from =1 to ‘88, the 4/c, is the final value
of /¢ in the first integration. Hence in order to draw the ordinates in the second
part of the curve to the same scale as those of the first, the numbers in Tables VII.
and XIV. must be divided by ‘76.

Also the second set of ordinates are not spaced out at the same intervals as
the first set, for the d./c of the second integration is 76 of the d,/c of the first
integration.

Hence the ordinates given in the four Tables, IV., VIL, XI., and XIV., are to be
drawn corresponding to the abscisse

0,1,2 3, 4,5, 6,676, 752, 828,

In fig. 7 these abscissee are marked off on the horizontal axis.

The first integration corresponds to the part OO’, and the marked points correspond
to the seven values of & from 1 to 76 inclusive. The second integration corresponds
to the part O'O’, and the values computed in Tables VII. and XIV. were divided by
"76 to give the ordinates.

The value for £=76 of the first integration is identical with that for £=1 of the
second.

The integrations, which have been carried out, correspond to the determination of
the areas lying between these curves and the horizontal axis, areas below being
esteemed negative.

The two curves for d log tan §I/d,/c lie very close together, and we thus see that the
motion of the earth’s proper plane is almost independent of the degree of viscosity.

On the other hand, the two curves for dlogtantJ/d,/¢ differ considerably. For
large viscosity the positive area is much larger than the negative, whilst for small
viscosity the positive area is a little smaller than the negative.

If the figure were extended further to the right, the two curves for the variation of
I would become identical, and the ordinates would become very small. The two
curves for the variation of J would separate widely. That for large viscosity would
go upwards in the positive direction, so that its ordinates would be infinite at the
point corresponding to A=4%; the curve for small viscosity would go downwards in the
negative direction, and the ordinates would be infinite at the point where A=1.

In this figure OO” is 6 centimeters, OO” is 8'28 centimeters, and the point
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corresponding to A=2% would be 152 centimeters from O, and the point corresponding
to A=1 would be 17-4 centimeters from O.

We thus see that the degree of viscosity makes an enormous difference in the
results.

In the figure, portions of these further parts of the two curves for the variation of
J are continued conjecturally by a line of dashes.

The whole figure is to be read from left to right for a retrospective solution, and
from right to left if we advance with the time.

Fig. 7.

1 )
ave log lan 71

-

l
|
|
|
|
{
|

Diagram to illustrate the motion of the proper planes of the moon and earth.



834 MR. G. H. DARWIN ON THE SECULAR CHANGES IN

§ 22. The effects of solar tidal friction on the primitive condition of the earth
and moon.

In the paper on “Precession,” §16, T found, by the solution of a biquadratic
equation, the primitive condition in which the earth and moon moved round together
as a rigid body.

Since writing that paper certain additional considerations have occurred to me,
which seem to be important in regard to the origin of the moon.

It was there remarked that, as we approach that critical condition of dynamical
instability, the effects of solar tidal friction must have become sensible, because of the
slow relative motion of the moon and earth. I did not at that time perceive the full
significance of this, and I will now consider it further.

Suppose the moon to be moving orbitally nearly as fast as the earth rotates. Then
the tidal reaction, which depends on the lunar tides alone, must be very small, and
therefore the moon’s orbital motion increases retrospectively very slowly. On the
other hand, the relative motion of the earth and sun is great, and therefore if we
approach the critical condition close enough, the solar tidal friction must have been
greater than the lunar, however great the viscosity of the planet. The manner in
which this will affect the solution of the previous paper may be shown analytically as
follows. '

If we neglect the obliquity, and divide the equation of tidal friction by that of tidal
1eaction, and suppose the viscosity small, we have from (176)

B

Then integrating we have

n:no-l-%[(l - §)+-_13<1’>2(1 —§13):|+%j':<f>2nfnd$

Ty, T

If we do not carry the integration to near the critical phase, where # is equal to £2,
the last integral is small, but it tends to become large as n becomes nearly equal to £;
it has always been neglected in our integration. When however we wish to apply
this equation to find the values for which n is equal to £2, it cannot be neglected.

Suppose the integral to be equal to K. Then in the first part of the above expres-
sion we may put n=0=a® and we may neglect 15(7'/7)*(1—£%). Hence the equation
for finding the angular velocity of the two bodies at the critical phase, when n=14, is
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1 1
3 I
w—no+lc sm+K
or

—<n0+%+K>m+%=0

The root of this equation, which gives the required phase is nearly equal to the
cube-root of the second coefficient, hence

B=n=0n= <no+%—|— K> nearly.

Now in the paper on ““ Precession ” we found the initial condition, on the hypothesis
that K was zero. Hence the effect of solar tidal friction is to increase the angular
velocity of the two bodies when their relative motion is zero. Since K may be large,
it follows that the disturbance of the solution of § 16 of * Precession” may be
considerable.

This therefore shows that it is probable that an accurate solutlon of ‘our problem
would differ considerably from that found in “Precession,” and that the common
angular velocity of the two bodies might have been very great.

If KepLer's law holds good, then the periodic time of the moon about the earth,
when their centres are 6,000 miles apart, is 2 hrs. 36 m., and when 5,000 miles apart
is 1 hr. 57 m.; hence when the two spheroids are just in contact, the time of
revolution of the moon would be between 2 hrs. and 23 hrs.

Now it is a remarkable fact that the most rapid rate of revolution of a mass of fluid,
of the same mean density as the earth, which is consistent with an ellipsoidal form of
equilibrium, is 2 hrs. 24 m. Is this a mere coincidence, or does it not rather point
to the break-up of the primeeval planet into two masses in consequence of a too rapid
rotation ?

*Tt is not possible to make an adequate consideration of the subject of this section
without a treatment of the theory of the tidal friction of a planet attended by a pair
of satellites.

It was shown above that if the moon were to move orbitally nearly as fast as the
earth rotates, the solar tidal friction would be more important than the lunar, however
near the moon might be to the earth. I now (September, 1880) find that the con-
sequence of this is that the earth’s rotation continues to increase retrospectively, and
the moon’s orbital motion does the same ; but the difference of the rotation and orbital

* From this point to the end has been added, and the section otherwise abridged since the paper was
presented.—September, 1880.
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motion gets continually less and less. Meanwhile, the earth’s orbital motion round the
sun is continually increasing, and the distance from the sun decreasing retrospectively.
Theoretically this would go on until the sun and moon (treated as particles) revolve
as though rigidly connected with the earth and with one another. This is the con-
figuration of maximum energy of the system.

The solution is physically absurd, because the distance of the two bodies from the
earth would then be very much less than the earth’s radius, and @ forttor: than the
sun’s radius. '

It must be observed, however, that in the retrospect the relative motion of the moon
and earth would already have become almost insensible, before the earth’s distance
from the sun could be sensibly affected.

V.
SECULAR CHANGES IN THE ECCENTRICITY OF THE ORBIT.
§ 23. Formation of the disturbing function.

We will now consider the rate of change in the eccentricity and mean distance of the
orbit of a satellite, moving in an elliptic orbit, but always remaining in a fixed plane,
namely, the ecliptic; and the rate of change of the obliquity of the planet’s equator
when perturbed by such a satellite will also be found.

Up to the end of Part I. the investigation for the formation of the disturbing
function was quite general, and we therefore resume the thread at that point.

In the present problem the inclination of the satellite’s orbit to the ecliptic is zero,
and we have

w=w=D= cos 41, k=k=0Q=sin {1

We thus get rid of the = and « functions, and henceforth = will indicate the
longitude of the perigee.
Then by equations (24-8),
M,?—M,?*=P* cos 2(x— )+ 2P>@Q? cos 2x+ @* cos 2(x+6)
—2M,M,= The same with sines for cosines
M,M;=—P?Q cos (x—20)+PQ(P?*— @) cos x+ P@? cos (x+26)
M, M;= The same with sines for cosines

L —MP=3(P'— 4P*Q+ Q*)+2P*Q cos 20
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By the definitions (29)

X= [0(17 ‘3)] M, Y= [”(l‘eﬂaMz, = [”(1“’2)] :

Now let

¢(a)=[@}3 cos (20+a), (a)= [”(1‘“32)] cos a, R:[ﬁ%"-@f . (264)
Then
X?—Y?=Pio(—2x)+2P*Q*¥(2x) + Q*P(2x) )
2XY= The same when x-17 is substituted for y
V2= — PQ0(—x)+ PQUP'— @)¥(x)+ P@B()
XZ= The same when x—4 is substituted for x
(X4 Y?—272) =4(P*— P*Q*+ Q)R 4-2P*Q*®(0)

v

(265)

Hence all the terms of the five X-Y-Z functions belong to one of the three types
®, ¥, or R. v
The equation to the ellipse described by the satellite Diana is

e(1—¢€*)
r

——*=1+4ecos(0—=) . . . . . . . . (266)

Hence

R=1434e*4-8e(14-1e?) cos (0—=)+3e? cos 2(0—wm)+-Le® cos 3(f—wm) )
@(a)=R cos (204a)=(1+3¢%) cos (20+a)

+2e(1+1e?)[cos (80+ a—w)4-cos (04 oa+=) ] - (267)
+36*[cos (40+a—2m)+ cos (a+2w) ]
+ 3e*[cos (50+a—3w)+ cos (—a—3wm)] )

and ¥(a)=R cos a.

Now by the theory of elliptic motion, # the true longitude may be expressed in
terms of 2f-+e€ and =, in a series of ascending powers of e the eccentricity. Hence
® (), R, and ¥ («) may be expressed as the sum of a number of cosines of angles of
the form [(2t-+€)+mw+na, and in using these functions we shall require to make o
either a multiple of y or zero, or to differ from a multiple of x by a constant.
Therefore the X-Y-Z functions are expressible as the sums of a number of sines or
cosines of angles of the form I(0¢-+¢) +mm—+ny.

Now x increases uniformly with the time (being equal to nt-}-a constant) ; hence, if

MDCCOLXXX. 5 P
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we regard the elements of the elliptic orbit as constant, the X-Y-Z functions are
expressible as a number of simple time-harmonics. But in § 4, where the state of
tidal distortion due to Diana was found, they were assumed to be so expressible ;
therefore that assumption was justifiable, and the remainder of that section concerning
the formation of the disturbing function is applicable.

The problem may now be simplified by the following considerations :—The equation
(12) for the rate of variation of the ellipticity of the orbit involves only differentials of
the disturbing function with regard to epoch and perigee. It is obvious that in the
disturbing function the epoch and perigee will only occur in the argument of
trigonometrical functions, therefore after the required differentiations they only occur
in the like forms. Now the epoch never occurs except in conjunction with the mean
longitude, and the longitude of the perigee increases uniformly with the time (or
nearly so), either from the action of other disturbing bodies or from the disturbing
action of the permanent oblateness of the planet, which causes a progression of the -
apses. Hence it follows that the only way in which these differentials of the
disturbing function can be non-periodic is when the tide-raiser Diana is identical with
the moon. Whence we conclude that—

The tides raised by any one satellite can produce no secular change in tke eccentricity
of the orbit of any other satellite.

The problem is thus simplified by the consideration that Diana and the moon
need only be regarded as distinct as far as regards epoch and perigee, and that they
are ultimately to be made identical.

Before carrying out the procedure above sketched, it will be well to consider what
sort, of approximations are to be made, for the subsequent labour will be thus largely
abridged.

From the preceding sketch it is clear that all the terms of the X-Y-Z functions
corresponding with Diana’s tide-generating potential are of the form

(a+be-ce*+de+fel~+&e.) cos [ Ix+m(2t+e)+nw+8]
From this it follows that all the terms of the ¥-3-%Z functions are of the form
F(a+be+ce?+ded+fet+&e.) cos [ Iy +m(2t+€) +nw+4-8—f].
Also by symmetry all the terms of the X'-Y'-Z’ functions are of the form
(a+be+ce*+ded+fet+&e.) cos [ Iy’ +m(2t+€)+nw’ 48],

and in the present problem the accent to y may be omitted.

The products of the ¥-I-Z functions multiplied by the X'-Y'-Z’ functions occur in
such a way that when they are added together in the required manner (as for example
in YZ BZ+X'Z' ¥Z) only differences of arguments occur, and x disappears from the
disturbing function. Also secular changes can only arise in the satellite’s eccentricity
and mean distance from such terms in the disturbing function as are independent of
Nt+4e€ and @, when we put € =€ and »'=w». Hence we need only select from the
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complete products the products of terms of the like argument in the two sets of
functions.

Whence it follows that all the part of the disturbing function, which is here
important, consists of terms of the form

Fa-+be+ce®+ded+fet+&e.)? cos [m(e—€ )+ n(m—o")—f]

or
F(a?4-2abe+(2ac+b%)e* + (2ad +2bc)ed + (2af 4 2bd +c?)et+-&e.)
cos [m(e—e€)+n(w—=")—f]

Now it is intended to develop the disturbing function rigorously with respect to
the obliquity of the ecliptic, and as far as the fourth power of the eccentricity.

The question therefore arises, what terms will it be necessary to retain in developing
the X-Y-Z functions, so as to obtain the disturbing function correct to e*.

In the X-Y-Z functions (and in their constituent functions ®(a), ¥(«), R) those
terms in which a is not zero will be said to be of the order zero ; those in which a is
zero, but b not zero, of the first order ; those in which a=5b=0, but ¢ not zero, of the
second order, and so on.

Then, by considering the typical term in the disturbing function, we have the
following—

Rule of approximation for the development of the X-Y-Z functions and of ®(a),
¥(a), R: develop terms of order zero to e*; terms of the first order to €?; terms of
the second order to e*; and drop terms of the third and fourth orders.

To obtain further rules of approximation, and for the subsequent developments we
now require the following theorem. :

Expansion of cos (k9+B) in powers of the eccentricity.

0 is the true longitude of the satellite, 2¢+e€ the mean longitude, and = the
longitude of the perigee. For the present I shall write simply £ in place of 2¢t+e.
By the theory of elliptic motion

N=0—2e sin (0—=)+Fe*(1+ }e?) sin 2(0—=)—3€? sin 3(0—wm) +55¢* sin 4 (0 —=w)
If this series be inverted, it will be found that*

O=0+2e(1—1e?) sin (2—w)+2e*(1 —L5e?) sin 2(2—w)+13e® sin 3(2—w)
+153e sin 4(N—=)

% See Tarr and Stepre’s ¢ Dynamics,’ art. 118, or any other work on elliptic motion.

5p 2
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By differentiation we find that, when e=0,

a*0 3 .
——=1% sin 2(2—w), g—z— —3 sin (2—w)+4E sin 3(2—w)

do
~—-2, sin (2—w=), X

T 11 sin 2(02 193 da
Joh sin 2(2—=)+2192 sin 4(2—w), =2—2 cos (2—m)

(%93:6 sin (2—w)—2 sin 3(2—w), (d"> —6—8 cos 2(2—m)+2 cos 4(2—w)

a0 d*6
o de—5 €08 (2—w=)—1 cos 3(2—w), < > iJZ——H—5 sin 2(2—w)—% sin 4(2—=)

P0\2 N
<de3> =25-25 cos 4(N—w), = —348 cos 2(2—w)—1E cos 4(N—w)

To expand cos (k§+B) by means of MACLAURINS theorem, we require the values
of the following differentials when e=0 and =420 :-—

d . do
= €08 (k0+-B)=—*k sin (k0+’8)c_lé

0% cos (k0+B)=—F? cos (kﬁ-l—,B)(g > —Fk sin (k0+,8)sll—~

ds . .
& cos (k0-+B)=F sin (k0+3)<§g> — 31 cos (K9+B)x To—1: sin (0+B)

& cos (8+B) =Tt cos (k0+,8)(;l~> 46k sin (k0+,8)< )fl—‘? cos(k0+lg)<dez>2

aé d*0

— 472 cos (H0-+B) So—F sin n (t0+B)r

Now when e=0, k+B=Fkn-+B, and the values of the differentials and functions of
differentials of e are given above. Then if we substitute for these functions their
values, and express the products of sines and cosines as the sums of sines and cosines,
and introduce the abridged notation in which k2+4B4s(2—w) is written (k4s), we

have



THE ELEMENTS OF THE ORBIT OF A SATELLITE. 841

®1=gé cos (k0+B)=—k cos (k—1)+% cos (k+1)

0,= d 2cos (k04 B)= (k*—3%k) cos (k—2) —2k* cos k+ (k*+5k) cos (k+2)

®3=Z% cos (k+B) = — (BB — L5k +13%) cos (k— 3) -+ 3 (k5 — 3k Lk) cos (k—1)

—3(k> 5>+ 1k) cos (k+1)+ (B3 +212%>+212k) cos (k43) L (268)
0, =" cos (H+8) = (—F1+ 1§+ 18K —195) cos (k—4)
— (4k*— 1513+ 16k —2LLk) cos (k—2)
+ 3(2— 2352 2%) cos (K)— (4k*+ 1543+ 16K+ 21k) cos (k-+2)
+ (425313 1857 +4-123Ek) cos (k+4) J
where the ®’s are merely introduced as an abbreviation.
Then by MACLAURIN’S theorem
cos (k0+B)=cos (k2+B)+€0,+4e0,+§e*0;+54e'0,. . . . (269)

In order to obtain further rules of approximation we will now run through the future
developments, merely paying attention to the order of the coefficients and to the factors
by which 2t+e€ will be multiplied in the results. From this point of view we may
write

O(a)=(e") cos (20)+(e)[cos (36)+ cos ()4 (e*) cos (48)+ cos (0)]
~+(e®)[ cos (56)+ cos ()]

W(a)=R=(e°) cos (0)+(e) cos (8)+(e?) cos (26)+(e®) cos (30)

The cosines of the multiples of @ have now to be found by the theorem (269) and
substituted in the above equations.

In making the developments the following abridged notation is adopted ; a term of
the form cos [(k+s)2+4B—sw] is written {k+s}.

Consider the series for ®(«) first.

We have by successive applications of (269) with k=1, 2, 3, 4, 5.
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(60) cos (26)=(e") {2} -+ ()L {1} + {3} T-H ({0} + {23 +{4}]
(=1 (13183 (531 —2}+ (0} + {2} + {43 +{6}]
(€) cos (30)=(e) {33 + ()12} + {1 T+ ({1} + 3} +{5}]
([ 03+ {2} + {43+ 63]
(€) cos (0)=(e) (13 +(e)[ (03 + {2 (€)1 — 11+ {1} +13] |
(e =23+ {0} + {23+ {4}]
() cos (40)=(e) {4} -+ (&) {3} + {5} ]-H ({2} + {43 +{6}]
() cos (0)=(c?) {0}
(%) cos (56)=(c") {5} + (e[ {4} +(6}]
(%) cos (6)=(c") {1} +(e*)[ {0} +{2)]

In these expressions we have no right, as yet, to assume that {—2} and {—1} are
different from {2} and {1}; and in fact we shall find that in the expansion for ®(a)
they are different, but in that for R they are the same.

Then adding up these, and rejecting terms of the third and fourth orders by the first
rule of approximation, we have

@ (o) =[(e)+(e*) +(e") J{23 +[(e) + (&%) JL{} + £33 H[(e%) 4 (e") ][ {0 + {43 ]
+ () {—13+(e") {—2}

It will be observed that {5} and {6} are wanting, and might have been dropped
from the expansions. Also {0} and {4} are terms of the second order, therefore
wherever they are multiplied by (e!) they might have been dropped. Hence
(€®) cos (56) need not have been expanded at all. A little further consideration is
required to show that (e®) cos (f) need not have been expanded.

(€®)cos (f) is an abbreviation for 4e’cos (#—a—3w), and therefore in this
case {1}= cos (2—a—3w) and {2}= cos (22—a—4w); but in every other case
{1}=cos (R+o+w=m) and {2}= cos (22+«). Hence the terms {1} and {2} in
(€%) cos () are of the third and fourth orders and may be dropped, and {0} may also
be dropped. Thus the whole of (e?) cos (6) may be dropped.

With respect to {—2} and {—1}, observe that {2} in the expansion of cos (k,0-+8;)
stands for cos [202-4(k,—2)=+B,]; and {—2} in the expansion of cos (k04 8,) stands
for cos [202— (ky+2)w—B,]; and k), k, are either 1, 2, 3, or 4; and B, B, are multiples
of x+ a constant. Hence {2} and {—2} are necessarily different, but if 8, and B,
were multiples of = they might be the same, and indeed in the expansion of R
necessarily are the same.
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In the same way it may be shown that {—1} and {1} are necessarily different.
Therefore {—1} and {—2} being terms of the third and fourth orders may be

dropped.
It follows from this discussion that, as far as concerns the present problem,

(%) cos (26) = () {2} + () {13+ {3} 1+ (I {03 + {2} + {4} ]+ (") {13 + {33 ]+ ()L {2}]
(e)cos (30)=(e) {3} +(e") {2} + {43 I+ (") {13 + (3} ]+ (") {2}
() cos (0)=(e") {1} +(e*) {03 + {2} ]+ () {1} + {83 ]+ (e*) {2}
(€%)cos (40)=(e") {4} +(e*) {8} +(e*) {2}
(¢ cos(0)=(e%) {0}
And the sum of these expressions is equal to ® ().

We thus get the following rules for the use of the expansion (269) of cos (k64 B)
for the determination of @ (a):

When £=2, omit in ®, terms in cos (k—3), cos (k43)
in @, terms in cos (k—4), cos (k—2), cos (k+2), cos (k-+4)

When k=3, omit in ®, term in cos (k+2)
in @, terms in cos (k—3), cos (k+1), cos (k+3)
all of ®,

When %=1, omit in 8, term in cos (k—2)
in ®; term in cos (k—3), cos (k—1), cos (k-+3)
all of ®,

When k=4, omit in ©, term in cos (k+1)
in ®, term in cos(k), cos (k+2)
all of ®,, ®,

Then following these rules we easily find,

When k=2, B=a

cos (204 o) =(1—4e?4-$3e) cos (2024a)—2e(1—Fe?) cos (R +o+=)
+2e(1—27¢€ cos (324 a—w=)+e® cos (a+2w) +126 cos (4R+a—2w) .  (270)

When k=3, B=a—=

cos (30+a—zw)=(1—9¢%) cos (324 a—w)—3e(1 —11e?) cos (2024 <)
+3e cos (42+4-a—2w)+4e? cos (R+a+wm). (271)
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When k=1, B=a+=

cos (0+a+w)=(1—e?) cos (24 a-+=)+e(l—5e?) cos (224a)—e cos (a4 2w)
+e?cos (B+a—wm). (272)

‘When k=4, B=a—2=

c0s (40-+a—2z) =cos (4024 a—2w) —4e cos (302 +a—w)+4te? cos (22+-a) . (273)

These are all the series required for the expression of ®(a), since cos (a+42w) does
not involve 6, and by what has been shown above cos (50 +a—3=) and cos (§—a—3z)
need not be expanded.

We now return again to the series for R or (), and consider the nature of the

approximations to be adopted there.
With the same notation

() cos (0)=(e){0}
(008 ()= 11+ E0 -+ (I L=+ L+ 131
+ {21+ {03+ {2} +{4]]
(e?) cos (20)= (62){2}-!-(63)[{1}+{3}]+(e4)[{0}+{2}+{4}]
(%) cos (30)=(e’){8} +(e*)[ {2} +{4}]
Since R is a function of #—, therefore after expansion it must be a function of

fN—w, and hence {1} must be necessarily identical with {—1}, and {2} with {—2}.
Adding these up, and dropping terms of the third and fourth orders,

R=[(e")+ (") + (") {03 +{(e) +(e) {1} + () { —1] +(e)+ (]2} +(e){—2}

Here {0} is a term of the order zero, {1} of the first order, and {2} of the second.
Therefore by the first rule of approximation {2} and {—2} may be dropped when
multiplied by (e?).

Also {3} and {4} may be dropped..

Hence as far as concerns the present problem

(e") cos (0)=(e") {0}
(e) cos (6)= (e){l}-l-(ez)[{o}+{2}]-}-(63)[{-—1}+{1}]+(e*){0}
(e?) cos (26)=(e®) {2} +(e) {1} +(¢") {0}
and (e?) cos (36) need not be expanded.

And the sum of these expressions is equal to R.
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We thus get the following rules for the use of the expansion of cos (k§4B) for the
determination of R.

When k=1, omit in 8, term in cos (k4 2)
in @, terms in cos (k—3), cos (k+1), cos (£+3)
all of ®,

When k=2, omit in ®, term in cos (k+1)
in @, terms in cos (k), cos (k4 2)
all of ®,, 8,.

Then following these rules, we find

When k=1, B=—=

cos (0—wm)=(1—e’) cos (2—m)—etecos 2(N—w) . . . . (274)
When k=2, B=—2=
cos 2(0—m)= c0s 2(—m)—2e cos (2—m)+2 . . . . (275)

These are the only series required for the expansion of R or ¥(a), since by what is
shown above, cos 3(f—=) need not be expanded.

Now multiply (270) by 1+3e; (271) by fe(1+1e?); (272) by $e(1-+1e?); and (273)
by $e?; add the four products together, and add e’ cos (a+2w), and we find from
(267) after reduction

D(o) = (1 — e+ 15 e?) cos (2024 o) —Le(1—28e?) cos (R+a+=)

+ie(1—%%"e?) cos (32 +a—wm)+4%e? cos (4R+a—2m) . . . (276)

Next multiply (274) by 3e(1+1e?); (275) by $e?; add the two products, and add
1+4$e% and we find from (267) after reduction,

R=1—4e’+§e*+4 3e(1—48e?) cos (R—w=)+Je? cos 2(2—m) . . (277)

MDCOCCLXXX. 5 Q
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Now let

B= —o(1 =) B 1= piiets By=o(l—3e); B=iget | o
Jy=1—e+3et; J,=je(l—1ge?); J =3¢’

And we have

®(a)=E, cos (2+4a-+w=)+E, cos (202+4a)+E; cos (324 a—w=) R
+E, cos (42+a—2w=) ,
R=Jy+2J, cos (2—=)+2J, cos 2(2—w=) L (279)
whence
Y(a)=J, cos a+J [ cos (24o—=)4 cos (2—a—w)]
+J[ cos (2024 0—2w)+ cos (22—a—2aw) ]

These three expressions are parts of infinite series which only go as far as terms in
e?, but the terms of the orders e and e have their coeflicients developed as far as e*
and e® respectively.

Then substituting from (279) for ®, ¥, and R their values in the expressions (265),
we find

X*—Y2=PE, cos (2x—02—w=)+ T, cos (2x—20)+E; cos (2x—32+=) )
+E, cos (2y—402+2w) |
+2P*QYJ, cos 2x4J, {cos (2x— R +=)+ cos (2x+2—w)}
+J,{cos (2x—202+2w) -+ cos (2x+202—2w)} |
+ QY E, cos (2x+2+=)+E, cos (2x+202)+E; cos (2x+302—w)

+E, cos (2y+412—2=)]
—2XY=The same, with sines for cosines L (280)

YZ=The same as X?*—Y?, but with — P°Q for P* PQ(F*—?) for
2P*Q*, PQ? for @* and with x for 2y

XZ=The same as the last, but with sines for cosines
WX Y2 =22 =H(P'—4PPQ 4 QY[ T 42T, cos (2—w)4-2J, cos 2(2—w) ]
+2PQY E, cos (2+4w)—+E, cos 22+ E; cos (32 —w)
+E, cos (42—2w)]

Then if weregard = as constant, and remember that x=nt, and that £ stands for
nNt+e and if we look through the above functions we see that there are trigonometrical
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terms of 22 different speeds, viz.: 9 in the first pair all involving 2n¢, 9 in the second
pair all involving nf, and 4 in the last.

Then since these five functions correspond to Diana’s tide-generating potential,
therefore we are going to consider the effects of 22 different tides, nine being semi-
diurnal, nine dlurnal and the last four may be conveniently called monthly, since
their periods are 1, %, % of a month and one month.

We next have to form the ¥-33-Z functions. We found that in the X-Y-Z
functions there were terms of 22 different speeds; hence we shall now have to
introduce 44 symbols indicating the reduction in the height of tide below its equi-
librium height, and the retardation of phase. The notation adopted is analogous to
that used in the preceding problem, and the following schedule gives the symbols.

Semi—oliumal tices.

speed  2n—402 2n—30 2n—20 20— 2n 220+ 20420 20430 2n+480
height Fiv Friii Fi Fi F F; Fy Ty T,
lag 2fi 2fit 2fi 2ft  2f  2f 2f; 26 2f,,

Diurnal tides.

speed n—42 n—302 2—202 a—0 n 2+ 2+20 2+302 w+40
height Giv G Git G G Gy Gy G Gy,
lag g g" g g g & S i 8iv

Monthly tides.™

speed n 20 3N 40
height ~ H* HE  HE v
lag hi 2ht 3hitt  4hiv

The ¥-3-Z functions might now be easily written out; for each term of the X-Y-Z
functions is to be multiplied, according to its speed by the corresponding height, and
the corresponding lag subtracted from the argument of the trigonometrical term. For
example, the first term of ¥*—* is FIE, P! cos (2x —R—=—2f"). It will however be
unnecessary to write out these long expressions.

In order to form the disturbing function W, the ¥-33-Z functions have now to be
multiplied by the X'-Y’-Z functions according to the formula (31). Now the X'-Y"-Z’
functions only differ from the X-Y-Z functions in the accentuation of 22 and =, because
Diana is to be ultimately identical with the moon.

Then in the ¥-3-Z functions £ is an abbreviation for 2¢-+e¢, and in the X'-Y’-Z’
functions £’ for N¢+4¢€; hence wherever in the products we find 2—1', we may
replace it by e—¢.

% With periods of 1, 4, 1, and one month

5qQ 2
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Again, since we are only seeking to find the secular changes in the ellipticity and
mean distance, therefore (as before pointed out) we need only multiply together terms
whose arguments only differ by the lag. Secular inequalities, in the sense in which
the term is used in the planetary theory, will indeed arise from the cross-multipli-
cation of certain terms of like speeds but of different arguments,—for example, the
product of the term FiPE, cos (2xy—202—2f") in ¥?—3)* multiplied by the term
2P, cos (2 — 20’ +2’) in X*—Y", when added to the similar cross-product in
4X'Y'¥P (which only differs in having sines for cosines) will give a term
2FiPSQ?E,J, cos [2(€ —e)—2=’ —2f"].  This term in the disturbing function will give
a long inequality, but it is of no present interest.

The products may now be written down without writing out in full either the
X-P-Z functions or the X'-Y’-Z’ functions. In order that the results may form the
constituent terms of W, the factor & is introduced in the first pair of products, the
factor 2 in the second pair, and the factor 4 in the last. Then from (280) we have

X/2 ; Y2 xfz _;3’32 + ZX’Y’%Q

=1P3{F'E 2 cos [ (€ —e€)+ (o’ — =) —2f* |+ F'Ey? cos [ 2(€ —e) —2f"]

+FiE,? cos [3(€ —e)— (&' — =) — 2f" ]+ FVE,? cos [4(€ —e) —2(a’ —=) — 27|}
+2P1Q*{FJ? cos 2f

+ T 2 cos [(€ —€)— (&' —m) — 2|+ FJ ? cos [ (€ —€) — (=" — =) 4-2f"]

+FiJ2 cos [2(€ —e)— 2(x' — =) — 2]+ Fid,? cos [2(€ —e) —2(a’ — =) +2£ )}
4+ 3@ {FE? cos [ (€ — )+ (o — )+ 2f |+ F1E,? cos [ 2(€ —¢) +2f; ]

+FyE.? cos [3(€ —e) — (o —=) 42653 |+ F E,? cos [ 4(€ —e) —2(n’ — =) 4-2f, |}

(281)

2

oY’ Z' VL +2X'Z/¥Z =the same, when 2P%Q? replaces §P%; 2P*Q*(P*—(*)? replaces
2P*Q"; 2P*Q° replaces 5¢°; and G’s and g’s replace F’'s and 2f’s . (282)

X2+ Y2 2772 ¥4 P— 2%
2 3 3

=3 (Pr—4 PP+ Q) {J P +2H 2 cos [ (€ —e)— (' —=)+h|
+2H1J,? cos [2(e' —e) —2(z’ — =)+ 2h" |}
+3P1Q*{HE,? cos [(e’ —€)+ (=’ —=)+hi |+ HE,? cos [2(¢ —e)+2hi] |
+HiE?cos[3(€ — €) — (o’ — =)+ 3hil |+ HVE 2cos[ 4( —e) — 2(a’ — =) + 4h'" ]} (283)
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1

The sum of these three last expressions (281-3) when multiplied by q (= 62)6

equal to W the disturbing function.

§ 24. Secular changes vn eccentricity and mean distance.

Before proceeding to the differentiation of W, it is well to note the following coin-
cidences between the coefficients and arguments, viz. : E,* occurs with (¢ —e)+ (=’ —=),
E;? with 2(¢—e¢), E? with 3(¢—€)—(a'—w), E? with 4(¢—€)—2(a"—w), J,* with
(€—e)—(z'—m), J,* with 2(¢'—€)—2(z’—w), and the terms in J* do not involve ¢, €,
=, w. In consequence of these coincidences it will be possible to arrange the results
in a highly symmetrical form. '

By equations (11) and (12)
—]E % —logn= (d o+, >W when y_

and

1dg d B
I dt <0Ze +7¢TI>W’ when y=0

Hence the single operation d/de’+yd/d=" will enable us by proper choice of the
value of vy to find either &d log n/kdt or df/kolt

Perform this operation ; then putting € =¢, =" =w, and collecting the terms accord-
ing to their respective E’s and J’s, we have

(50 2) 5 =
=E *(147y) {4 P°F" sin 2fi+ 2 P8Q*G' sin g'— 2 P*Q°Q; sin g, — 3 @Q%F; sin 2f;
- —3P'Q*Hisin h'}
+E,%(2) {the same with ii for i, and 2k for hi}
+E,*(3—y){the same with iii for i, and 8h' for hi}
+E,2(4—2y) {the same with iv for i, and 4h" for hi}
+J X1 —y) {2P*Q*(F'sin 2fi—F;sin 2f)+ 2P Q*(P?— Q*)*(Gsin gi—Gisin g;)
—3(P*—4PQ*+ Q*)H! sin hi}
+J.4(2—2y){the same with ii for i, and 2h" for h'} . . . . . . . (284)
The functions of P and @, which appear here, will occur hereafter so frequently that

it will be convenient to adopt an abridged notation for them. Let x then represent
either i, ii, iii or iv, and let



850 MR. G. H. DARWIN ON THE SECULAR CHANGES IN
H(x) =L P3F~ sin 2f*+ 2P Q*G* sin g*— 2 P2(°C sin g — $Q°Fy sin 2f; I
. —3P*QVH* sin (xh¥) | (255)
P(x) =2 P*QH(F*sin 2f*— Fysin 2f,) 4+ 2P2Q* (1P — Q) (G* sin g*—Gisin gy) | ’
—3(P*— 4P QP+ Q4PHx sin (xh¥) J

And the generalised definition of the F’s, G's, H’s, &c., is contained in the following
schedule

speed In—x, n—xL, xN, n+x02, 2n+x30
height P Gx H* Gy Fy ... (286)
lag 21* gr (xhY) g of,

We must now substitute for the E's and J's their values, and as the ellipticity is
chosen as the variable they must be expressed in terms of 7 instead of e. Also each
of the E¥s and J¥s must be divided by (1—e?).

Then since 4/ 1 —e?=1—, therefore

e?=2n—n? and (1—e?)*0=(1—n) " P=1+41294787?

Then by (278)

Bi=ie(i—2e)=in(i—19) and P mlo(on) )

Ef=1—11c"443%"=1—22 444", and ;= L = 1= 10n 7y

Ef=42eX(1—25eY) =42n(1—24%) , and (TEL)E_ 49, (1—55y)

E 28064080y cand B ! =280 L (esn)

Ip=1=s43et=1—6p+1oy" , and J2)12_1+m7+217,

J2=%e*(1—12e))=4n(1—8n) , and i— % 2)12 Sm(1+4n)

JP={e="2y s md = J

When y is put equal ’coql—7 we shall also require the following :—

1*373(253_777;1?:_%3(1_% ); %’ggz_57gn; L. .. (288)
e T
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Therefore by putting y== m equation (28 4) we have

- Tog m=4eb(i) 4 2(1 — 10m)(it) — 41— ) (i) — 578 (iv)
— (14 (i) — (i)

m,?ﬁ
@I“\"P

d
dt
and by putting y=0 in (284)

T = (=)0 + 20107+ L)+ (1= P+ 11367744i)
0L+ () + )

The equations may be also arranged in the following form :—

— 8 E L 0g n=3{ (i) + 4 (i) — 494 i) — 9 (1]
49 —20¢(i1) + 301 (1i1) — 578¢(iv) =22 (1)———~1[)(11)] . (289)

1dg ..
%zd—t=2¢(u)
(b (i) — 204 (ii) -+ 4Zb(ii) + $9(i) ]
0 — (1) +78¢(i) — L3P E(iii) + 1156h(iv) + 18y()) +-51¥GD)] . . (290)

The forfner of these apparently stops with the first pdvv'er of m, but it will be
observed that we have d log n/d¢ on the left-hand side so that dn/dt is developed as far
as 7’

These equations give the required solutions of the problemi. -

§ 25. Application to the case where the planet is viscous.

If the planet or earth be viscous, we have, as in § 7, Fr=cos 2f%, *=cos g%,
H*=cos (xh*), Gx=cos g, Fy=cos 2f,.

When these values are substituted in (289) we have the equation giving the rate ot
change of ellipticity in the case of viscosity. The equation is however so long and
complex that it does not present to the mind any physical meaning, and I shall
therefore illustrate it graphically.

The case taken is the same as that in § 7, where the planet rotates 15 times as fast
as the satellite revolves.

The eccentricity or ellipticity is supposed to be small, so that only the first line of
(289) is taken.

I took as five several standards of viscosity of the planet, such viscosities as would
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make the lag fi of the principal slow semi-diurnal tide, of speed 2n—20, equal to
10° 20° 30° 40°, 44°. (The curves thus correspond to the same cases as in §§7
and 10). Values of sin 4f*, sin 2g*, sin 2xh*, sin 2gy, sin 4f,, when x=1, ii, 1ii were then
computed, according to the theory of viscous tides.

These values were then taken for computing values of ¢(i), $(ii), ¢(iii), P(i) with
values of 1=0°, 15°, 30°, 45°, 60° 75°% 90°. The results were then combined so as to
give a series of values of dlogn/dt or de/edt, and these values were set out graphically
in the accompanying fig. 8.

Fig. 8.

(=}

Diagram showing the rate of change in the eccentricity of the orbit of the satellite for various
1de

T when e 18 small).

obliquities and viscosities of the planet (

In the figure the ordinates are proportional to de/edt, and the abscisse to ¢ the
obliquity ; each curve corresponds to one degree of viscosity.

From the figure we see that, unless the viscosity be so great as to approach
rigidity (when fii=45°), the eccentricity will increase for all values of the obliquity,
except values approaching 90°. ~

The rate of increase is greatest for zero obliquity unless the viscosity be very large,
and in that case it is a little greater for about 35° of obliquity.

Tt appears from the paper on “ Precession ” that if the obliquity be very nearly 90°,
the satellite’s distance from the planet decreases with the time. Hence it follows
from this figure that in general the eccentricity of the orbit increases or diminishes
with the mean distance; this is however not true if the viscosity approaches very
near rigidity, for then the eccentricity will diminish for zero obliquity, whilst the
mean distance will increase.



THE ELEMENTS OF THE ORBIT OF A SATELLITE. 853

If the viscosity be very small, the equations (289-90) admit of reduction to very
simple forms.
In this case the sines of twice the angles of lagging are proportional to the speeds
of the several tides, and we have (as in previous cases)—

sin 4fx sin 20% sin 2xh* sin 20y sin 4f,
—1—1 S _1_1 —1 Sx__1.41 =
sar = L EN =i, S =, S = e, Sop =1
Therefore

$(x)=} sin 4 [ P4 2P QU= 2P QP — QP — L\ (P AP QP AP QP+ Q6P
=1 sin 4f (cos i—1x\)
Y(x)="4 sin 4 =2 PHQ*N—2P2Q*(P? — @ xh—gx\ (P — 4P QP+ Q)]
—1 sin 4F (3x0)(3)
And |
B(1) +4b(ii) — 49¢h(iii) — (i) = — sin 4£(11 cos i—18)\)
— 20 (ii) +-301(iii) — 578(iv) — 21 (i) — SLh(ii) = — L sin 4£(297 cos 1 — 756))

Whence from (289)

g— ,Z%E log p=—4 sin 4£{11 cos ¢(1 4+2n) —18A(1421%)}
or
d 72 . . £
fd—t] 0g n== i(]—{_” )4t sin 4f{ cos z——%%«(l—l—lgﬁ—n)} Coe (291)

From this we see that, in the case of small viscosity, tidal reaction is in general
competent to cause the eccentricity of the orbit of a satellite to increase. But if 18
sidereal days of the planet be greater than 11 sidereal months of the satellite the
eccentricity will decrease. Wherefore a circular orbit for the satellite is only
dynamically stable provided 18 such days is greater than 11 such months,

Now if we treat the equation (290) for C—ff in the same way, we find——
The first line =3 sin 4f( cos t—N\).
The second =1 sin 4f(27 cos v—46\).

The third ~ =»*sin 4£ (273 cos i~ 697\)
MDCCOCLXXX. 5 B



854 MR. G. H. DARWIN ON THE SECULAR CHANGES IN

Therefore

;% 71é C% 3 sin 4f[( 1+277)+2737)2) cos i—\(1 446946977 Wl
" 'f (292)
1d T2 _
A ggg .Elé“(l 427942737 sin 4f[cos = (1+197)_897)2>J -J

From this it follows that the rate of tidal reaction is greater if the orbit be eccentric
than if it be circular. Also for zero obliquity the tidal reaction vanishes when

%:1—1917—}-4507;2

Hence if a satellite were to separate from a planet m such a way that, at the
moment after separation, its mean motion were equal to the angular velocity of the
planet, then if its orbit were eccentric it must fall back into the planet; but if its
orbit were circular an infinitesimal disturbance would decide whether it should
approach or recede from the planet.™

Now suppose that the viscosity is very large, and that the obliquity is zero.

Then

= v
Sl

log p="4(sin 4f'44 sin 4f"—49 sin 4%+ 6 sin 2h)

|
1=

and the sines are reciprocally proportional to the speeds of the tides, from which they
take their origin. As to the term in sin 2h!, which takes its origin from the elliptic
monthly tide, the viscosity must make a close approach to absolute rigidity for this
term to be reciprocally proportional to the speed of that tide; for the present, there-
fore, sin 2h' will be left as it is.

Then the equation becomes, on this hypothesis,

g £d i 1=2 4901 —»)
-3 log p=1 sin 4f’ [ )»+4 T—n +8 sin 2h!
d 44 — 63N + 20\? -
%%mlog n=1sin 49‘(—{:__—%7&1_%-7—\5—% sin 2h%, . . . . . (293)

The numerator of the first term on the right is always positive for values of \ less
than unity, and the denominator is always positive if N be less than £.  Hence if the
viscosity be not so great but that the last terra is small, the eccentricity always
increases if A lies between zero and £

#* See Appendix (p. 886) for further considerations on this subject.
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If however X\ be not small, then even though the viscosity be not great enough to
approach perfect rigidity, we must have sin 2hi=2(1—N\) sin 4f%/A.  And of course, by
supposing the viscosity great enough, this relation may be fulfilled whatever be A.

Then our equation becomes

aEd g e 12— 80N+ 96N — 200 _
o ar 08 = S A (294)

The numerator on the right-hand side is always positive for values of N less than
unity, and the denominator is positive for values of X less than £.
Since

3
-l

> .1 3 ii
=41~ sin 4f

2
{la's

e
= |

we have

Ay 12800000 — 200
dg BT TE NI — 1Y

From this we see that, for very large viscosity,—

For values of \ between 1 and ‘6667, the eccentricity increases per unit increase
of & and the rate of increase tends to become infinite when A\="6667.

The remarks concerning the physical absurdity of this class of result in § 21 may be
repeated in this case.

And for values of \ between ‘6667 and 0, the eccentricity diminishes.

A similar treatment of the case of small viscosity shows that—

For values of \ between 1 and ‘6111 the eccentricity decreases, and for values of A
between ‘6111 and 0 the eccentricity increases.

Thus it is only between A\="6111 and ‘6667 that the two cases agree.

Hence in the course of evolution of a satellite revolving about a purely viscous
planet :— | '

For small viscosity the orbit will remain circular until 11 months of the satellite are
equal to 18 days of the planet, then the eccentricity will increase until this relation-
ship is again fulfilled, when the eccentricity will again diminish.* -

And for very large viscosity the orbit will at once become eccentric, and the
eccentricity will increase very rapidly until two months of the satellite are equal to
three days of the planet. The eccentricity will then diminish until this relationship
is again fulfilled, after which the eccentricity will again increase.

We shall consider later which of these views seems the more probable with regard
to the history of the moon.

* See ¢ On the Analytical Bxpressions, &c.,” Proc. Roy. Soc., No. 202, 1880.
5 R 2
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§ 26. Secular change in the obliquity and diurnal rotation of the planet, when the
satellite moves vn an eccentric orbit,

The method of treating this problem will be the same as that of § 12, to which the
reader is referred. ‘

In the complete development of the disturbing function x—yx" would accur wherever
the F’s and G’s occur, but never with the H’s,

If we put y=1 in (284), we have

AW AW _ 27 ,
del +dﬁfﬁ —g(l—’ﬂ>122Ex ¢(X)- a v 9 . B . . (295)

Where 3 means summation for 1, ii, iii, iv.

This result follows from the fact that in all the E-terms of W, € and =’ enter in
the form l¢ +ma’, where [4m=2.

In the F*-terms x’ enters in the form 2y/, and is of the opposite sign from I4m ; in
the Fy-terms it enters in the form 2/, and is of the same sign as [+m ; in the G*-terms
it enters in the form ¥/, and is of the opposite sign from I+4m ; in the Gy-terms it
enters in the form y’, and is of the same sign as {4m.

Hence as far as regards the E-terms of W, we have

N . AW _ (AW AW
i the F*-terms dx,--—— < Ex, + dm’)
. dW d
in the Fy-terms = — l‘f
de do
dW  dW
o X, e L —
in the G*terms g( e dm’)
IW . dW
. _ . 1 4 wry
in the Gy-terms = Q< e dm’)
in the H-terms = 0

In the J-terms of W, x” enters with coefficient 2 in the F*- and Fy-terms, and with
the coefficient 1 in the G*- and Giterms, and is always of the same sign as the
corresponding lag.

Hence for the J-terms

dwW dW  dW
@_2<ﬁ?’7+ dg")

Where 3 means summation for the cases where x is zero and both upper and lower
tand ii.

From this we have
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dn__ dW
dt d X

g Q1= )12[2}3 & { P8F* sin 2f*4-2 PSQ*G* sin g*+2P2Q°Gy sin g+ @8F sin 2f}

+J 2 {4 P*Q'F sin 242 P2Q*( PP — @*)°G sin g}
+2J 2 {4 P*Q*(F* sin 2+ F, sin 2f) + 2 P2Q*(P?— Q*)*(G* sin g*+ Gy sin gy) } | (296)

The first = being from iv to i, and the last only for ii and i.

This is a partial solution for the tidal friction, and corresponds only to the action of
the moon on her own tides; that of the sun on his tides may be obtained by
symmetry.

It is easy to see that for the joint effect of the two bodies we have

a 271’ 1 , . o T . -
37“;:‘% Ay odo (AP QT sin 242 PP — Q)G sing} . (297)

From (296-7) and (287-8) the complete solution may be collected.

In order to find the secular change in the obliquity, we must consider how ¢ would
enter in W,

Now in the development of W, 2'¢4€ stands for 2¢t4€—y/, and =" stands for
= —y'. Hence from (295)

=—(+iw)
272
o

= = n)mEE W(x) .. . . . .. (298)
Now by (18)
o di AW . dW
nsing = dyf cos Z—d\lr’

Then substituting for fl——;v— from (296) and for 2V ay from (298), we find
nlr— ; o (SEPQR sin 204 PQ(P43¢%) G s g
—PQ*(8P°+ Q)G sin gy—PQ'F, sin 2f, — 3 P3Q*H* sin (xh*)]
—J 2P (PP — Q)T sin 26+ PQ(P2— Q)G sin g]
—J, 2 P3Q}(P?— Q) (F* sin 2f*4-F, sin 2f,)
+PQ(PP— )G sin g7+ G sin g} . (299)
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The first 3 being from iv to i, and the last only for ii and i.

This is only a partial solution, and gives the result of the action of the moon on her
own tides ; that for the sun on his tides may be obtained by symmetry.

It is easy to see that for the joint effect

g o 1 o e e o e
e T JJ [ 2P (PP — Q)F sin 2f4- PR(P*—@Q*)*Gsing] . (300)

From (299, 800) and (287-8) the complete solution may be collected.
Then if these solutions be applied to the case where the earth is viscous and where
the viscosity is small, it will be found after reductlon as in previous cases that

dn sin 4f] 1o . o , ’
= [ Y1 =% sin? O)(1 415 +2§59%) +72(1—1 sin? ¢) (14157 +2559?)
IQ . # '!2’ . Y- 4
—1° " cos i1 _|_27»,,+2787;2)—7-277 cos 1(14-279+273%")
+rr' sin? ?'(1+3n+3n’+6n2+9nn'+6n'2)] Coee e (301)
d@ sin 4f

"= da s1nz00%2[72(1+15n+19"’ Y1415y +15592)

QL ~sec (1 -|-277,+273772)—27’2; sec 1(14277"4-2737")

-—-7‘7’(1—}-377—[-—377'-[—6772—]—97777/4-67)’2)] Coo o oo (802)

These results give the tidal friction and rate of change of obliquity due both to the
sun and moon ; 7 is the ellipticity of the lunar orbit, and »’ of the solar (or terrestrial)
orbit. _

If 5 and %/ be put equal to zero they agree with the results obtained in the paper
on “Precession.”

§ 27. Verification of analysis, and effect of evectional tides.

The analysis of this part of the paper has been long and complex, and therefore a
verification is valuable.

The moment of momentum of the orbital motion of the moon and earth round their
common centre of inertia is proportional to the square root of the latus rectum of the
orbit, according to the ordinary theory of elliptic motion. In the present notation this
moment of momentum is equal to C¢(1—n)/k.  Let us suppose the obliquity of the
ecliptic to be zero. Then the whole moment of momentum of the system (supposing
only one satellite to exist) is



THE ELEMENTS OF THE ORBIT OF A SATELLITE. 859
C{f—n)tn}

Therefore we ought to find, if the analysis has been correctly worked, that

LdE dn

£ dny
=(1- )70 dt

k dt

This test will be only applied in the case where the viscosity is small, because the
analysis is pretty short ; but it may also be applied in the general case.
When 7=0, we have from (292), after multiplying both sides by 1—x,

[ 1
mfﬁ(l—n)iz —|—2617+2-.Lb7) —\M1+4594651%?)

And when +=0 and 7'=0, from (301)

2 d
" sin 4ng2 '62?_1"‘157)-!-195 — M1 4277 +27379%)
Hence
14 d ,
(1=n)y df+£='%"81n i E11n<1+ ) —18My(1-+-217)]
;Ef? rom (291)

Thus the above formulas satisfy the condition of the constancy of the moment of
momentum of the system.

The most important lunar inequality after the Equation of the centre is the Evection.
The effects of lagging evectional tides may be worked out on the same plan as that
pursued above for the Equation of the centre.

I will not give the analysis, but will merely state that, in the case of small
viscosity of the earth, the equation for the rate of change of ellipticity, inclusive of
the evectional terms, becomes

. ! n £\2
fd log n=231(1+2y) sin 4f;5-{1—-%%;—%%’g<5> }

where £ is the earth’s mean motion in its orbit round the sun.
- From this we see that, even at the present time, the evectional tides will only reduce
the rate of increase of the ellipticity by gsth part of the whole. In the integra-

tions to be carried out in Part VI. this term will sink ip importance, and therefore it
will be entirely neglected.
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The Variation is another lunar inequality of slightly less importance than the Evec-
tion ; but it may be observed that the Evection was only of any importance because
its argument involved the lunar perigee, and its coeflicient the eccentricity. - Now
neither of these conditions are fulfilled in the case of the Variation. Moreover in the
retrospective integration the coefficients will degrade far more rapidly than those of
the evectional terms, because they will depend on (£2'/2)%. Hence the secular effects
of the variational tides will not be given, though of course it would be easy to find
them if they were required.

VI.
INTEGRATION FOR CHANGES IN THE ECCENTRICITY OF THE ORBIT.

§ 28. Integration in the case of small viscosity.

By (291-2), we have approximately

2 —log p="2L sin 4fg( +%n) cos t—15N]

;% C‘ZZE:% sin 4f (1+2/n)[cos i—\]
Therefore
PYRNG AT 1—4$nsect
(1+ : n)dflogn .{-’ 1—nsecs
= 1”51‘—- 7;*2 sec ¢ approximately

The last transformation assumes that \ or £2/n is small compared with unity; this
will be the case in the retrospective integration for a long way back.
Then as a first approximation we have

n=noé"
Therefore
j i%}’nd log n=2(n-—mn0)=—%"n,(1—E&") approximately
And for a second approximation
]ogg< E“>= (1 — 1) — moj S;c N G 1)

The integral in this expression is very small, and therefore to evaluate it we may
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assign to ¢ an average value, say I, and neglect the solar’ tidal friction in assigning a
value to n.

Then

1
n:no—}-]—c(l—f)
Let |
kny+ 1=k, so that n—-%(x—f)

Hence the last term in (303) is approximately equal to

7k.(20 sec If e EE)_7]C‘QO sec I[ <§5 1>+§’%—2~<§2— 1>—|—%<%— 1):'

7Lﬂo sec I log (Eno>
In the last term n has been written for (k—¢&)/k.
Now let
1/1 1/1 11
=g aalp) e frhesee T )
Then

1 n ,i—k';",‘l-"secl - ' .
7}:1705 <’IX¢’§> e . . e e e e e e e (304)

This formula will now be applied to trace the changes in the eccentricity of the
lunar orbit.

The integration will be made over a series of ¢ periods” which cover the same
ground as those in the paper on ¢ Precession;” and the numerical results of that
paper will be used for assigning the values to n and L.

kny is equal to 1/u of that paper, and therefore « is (14-p)/p.

First period of integration.

From £=1 to '88.

I is taken as 22° In “Precession” u was 4'0074, therefore kn,='24954 and
k=124954. Also kQ,=kn 2 n,, and 2y/n,=1/27-32.

In computing for § 17 of “Precession” I found at the end of the period
log n/n,="18971.

Using these values I find

logy, <E >""2 '=-00692

Also
K ="01980 4277 (1—£M)
MDCCCLXXX. 58
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Now e, the present eccentricity of the lunar orbit, is ‘054908.
‘Whence

N=1—4"1—e*="001509

And
270 (1 —£1)="015375.

Using these values I find

log,, p=659007 — 10, and the first approximation gave log,, n=6'56788 —10

Then =-00038911
Whence e='02789, at the end of the first period of integration.

Second period of ntegration.

From é=1 to '76. 1 was taken as 18° 45",
A similar calculation gives

Do oot . |
%> “  ="00817, the first part of K="06998, 279 (1 —£&")="00500

log <%—

‘Whence

log n=5"31758—10, and the first approximation gave log n=>527902—10

Therefore 7="000020777 and e='006446, at the end of the second period of
integration.

Third period of integration.

From é=1 to 76. I was taken as 16° 13".
Then a similar calculation gave

% )
log <;?é>“’”” " =100566, first part of K="12355, 2,7 (1—£1)="00027

Whence
log p=4'06584—10, and the first approximation gave log n=4'00653—10

Therefore 7="0000011637, and e=-001526 at the end of the third period of
integration.
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Fourth period of integration.

The procedure is now changed in the same way, and for the same reason, as in the
fourth period of § 17 of “ Precession.”

Let V. =nﬁ (as in that paper). Then the equation of tidal friction is
(i}

adN . T
— =3 4f'En~0(1 -\

and the equation for the change in % may be written approximately

o ng 11—18n
AN T= g 1o

Since X or £2/n is no longer small, this expression will be integrated by quadratures.
Using the numerical values given in § 17 of “Precession,” I find the following
corresponding values. ,
N= 1000 1107 1214 1-321

k—;’ﬂlll:lf"=15-469 17665  19°465  11:994

Then integrating by quadratures with the common difference dV equal to '107, we
find the integral equal to 5°5715.

Whence n=44273x 107, and e="00009411.

The results of the whole integration are given in the following table, of which the
first two columns are taken from the paper on ““ Precession.”

Taprte XVIL
o Moon’s ..
Day in m. s. hours | iq010a] period in Eccentricity of
and minutes. m. s. days. lunar orbit.
h. m. Days.
23 56 2732 ‘054908
15 28 1862 ‘027894
9 b5b 817 ‘006446
7 49 3'59 ‘001526
5 55 12 hours ‘000094

Beyond this the eccentricity would decrease very little more, because this inte-
gration stops where ) is about 4, and the eccentricity ceases to diminish when \ is 1+
The final eccentricity in the above table is only z3gth of the initial eccentricity,
and the orbit is very nearly circular.
38 2
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§ 29. The change of eccentricity when the wviscosity s large.

I shall not integrate the equations in the case where the viscosity is large, because
the solution depends so largely on the exact degree of viscosity.

If the viscosity were infinitely large, then in the retrospective integration the eccen-
tricity would be found getting larger and larger and finally would become infinite,
when M is equal to 3. This result is of course physically absurd. If on the other
hand the viscosity were large, we might find the eccentricity diminishing, then
stationary, and finally increasing until A\=2%, after which it would diminish again.
Thus by varying the viscosity, supposed always large, we might get conmderable
diversity of results.

VIL
SUMMARY AND DISCUSSION OF RESULTS.
§ 30. Laxplanation of problem.—Summary of Parts I. and I1.

In considering the changes in the orbit of a satellite due to frictional tides, very
little interest attaches to those elements of the orbit which are to be specified, in order
to assign the position which the satellite would occupy at a given instant of time.
We are rather here merely concerned with those elements which contain a description
of the nature of the orbit.

These elements are the mean distance, inclination, and eccentricity. Moreover all
those inequalities in these three elements, which are periodic in time, whether they
fall into the class of “secular” or “periodic” inequalities, have no interest for us, and
what we require is to trace their secular changes.

Similarly, in the case of the planet we are only concerned to discover the secular
changes in the period of its rotation, and in the obliquity of its equator to a fixed
plane.

It has unfortunately been found impossible to direct the investigation strictly
according to these considerations. Amongst the ignored elements are the longitudes
of the nodes of the orbit and equator upon the fixed plane, and it was found in one
part of the investigation, viz.: Part III., that secular inequalities (in the ordinary
acceptance of the term) had to be taken into consideration both in the five elements

which define the nature of the orbit, and the planet s mode of motion, and also in the
motion of the two nodes.

In the paper on ““Precession” I considered the secular changes in the mean distance
of the satellite, and the obliquity and rotation-period of the planet, but the satellite’s
orbit was there assumed to be circular and confined to the fixed plane. In the present
paper the inclination and eccentricity are specially considered, but the introduction of
these elements has occasioned a modification of the results attained in the previous
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paper. For convenience of diction I shall henceforth speak of the planet as the earth,
and of the satellites as the moon and sun ; for, as far as regards tides, the sun may be
treated as a satellite of the earth. The investigation has been kept as far as possible
general, so as to be applicable to any system of tides in the earth; but it has been
directed more especially towards the conception of a bodily distortion of the earth’s
mass, and all the actual applications are made on the hypothesis that the earth is a
viscous body. A very slight modification would however make the results applicable
to frictional oceanic tides on a rigid nucleus (see § 1 immediately after (15)).

I thought it sufficient to consider the problem as divisible into the two following
cases :— |

Ist. Where the moon’s orbit is circular, but inclined to the ecliptic. (Parts I., II.,
III., IV.)

2nd. Where the orbit is eccentric, but always coincident with the ecliptic. (Parts L.,
V., VL)

Now that these problems are solved, it would not be difficult, although laborious, to
unite the two investigations into a single one; but the additional interest of the
results would hardly repay one for the great labour, and besides this division of the
problem makes the formulas considerably shorter, and this conduces to intelligibility.

For the present I only refer to the first of the above problems.

It appears that the problem requires still further subdivision, for the following
reasons :— :

It is a well-known result of the theory of perturbed elliptic motion, that the orbit of
a satellite, revolving about an oblate planet and perturbed by a second satellite, always
maintains a constant inclination to a certain plane, which is said to be proper to the
orbit ; the nodes also of the orbit revolve with a uniform motion on that plane, apart
from ¢ periodic” inequalities.

If then the moon’s proper plane be inclined at a very small angle to the ecliptic, the
nodes revolve very nearly uniformly on the ecliptic, and the orbit is inclined at very
nearly a constant angle thereto. In this case the equinoctial line revolves also nearly
uniformly, and the equator is inclined at nearly a constant angle to the ecliptic.

Here then any inequalities in the motion of the earth and moon, which depend on
the longitudes of the nodes or of the equinoctial line, are harmonically periodic in
time (although they are “secular inequalities”), and cannot lead to any cumulative
effects which will alter the elements of the earth or moon.

Again, suppose that the moon and earth are the only bodies in existence. Here
the axis of resultant moment of momentum of the system, or the normal to the inva-
riable plane, remains fixed in space. The component moments of momentum are those
of the earth’s rotation, and of the moon’s and earth’s orbital revolution round their
common centre of inertia. Hence the earth’s axis and the normal to the lunar orbit
must always be coplanar with the normal to the invariable plane, and therefore the
orbit and equator must have a common node on the invariable plane. This node
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revolves with a uniform precessional motion, and (so long as the earth is rigid) the
inclinations of the orbit and equator to the invariable plane remain constant.

Here also inequalities, which depend on the longitude of the common node, are
harmonically periodic in time, and can lead to no cumulative effects.

But if the lunar proper plane be not inclined at a small angle to the echptlc the
nodes of the orbit may either revolve with much irregularity, or may oscillate about a
mean position® on the ecliptic. In this case the inclinations of the orbit and equator
to the ecliptic may oscillate considerably.

Here then inequalities, which depend on the longitudes of the node and of the
equinoctial line, are not simply periodic in time, and may and will lead to cumulative
effects.

This explains what was stated above, namely, that we cannot entirely ignore the
motion of the two nodes.

Our problem is thus divisible into three cases :—

(1) Where the nodes revolve uniformly on the ecliptic, and where there is a second
disturbing satellite, viz. : the sun.

(ii.) Where the earth and moon are the only two bodies in existence.

(iii.) Where the nodes either oscillate, or do not revolve uniformly.

The cases (i.) and (ii.) are distinguished by our being able to ignore the nodes.
They afford the subject matter for the whole of Part II.

It is proved in § 5 that the tides raised by any one satellite can produce directly
no secular change in the mean distance of any other satellite. This is true for all
three of the above cases.

It is also shown that, in cases (i.) and (il.), the tides raised by any one satellite can
produce directly no secular change in the inclination of the orbit of any other satellite
to the plane of reference. This is not true for case (iiL.).

The change of inclination of the moon’s orbit in case (i.) is considered in § 6. The
equation expressive of the rate of change of inclination is given in (61) and (62). In
§ 7 this is applied in the case where the earth is viscous. Fig. 4 illustrates the
physical meaning of the equation, and the reader is referred to § 7 for an explanation
of the figure. From this figure we learn that the effect of the frictional tides is in
general to diminish the inclination of the lunar orbit to the ecliptic, unless the obli-
quity of the ecliptic be large, when the inclination will increase. The curves also
show that for moderate viscosities the rate of decrease of inclination is most rapid
when the obliquity of the ecliptic is zero, but for larger viscosities the rate of decrease
has a maximum value, when the obliquity is between 30° and 40°.

If the viscosity be small the equation for the rate of decrease of inclination is
reducible to a very simple form ; this is given in (64) § 7.

In §§ 8, 9, is found the law of increase of the square root of the moon’s distance
from the earth under the influence of tidal reaction. The law differs but little from

* Tt is true that this mean position will itself have a slow precessional motion.
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that found and discussed in the paper on ¢ Precession,” where the plane of the lunar
orbit was supposed to be coincident with the ecliptic. If the viscosity be small the
equation reduces to a very simple form ; this is given in (70). In §10 I pass to
case (i), where the earth and moon are the only bodies. The equation expressive of
the rate of change of inclination of the lunar orbit to the invariable plane is given
n (71). Fig. 5 illustrates the physical meaning of the equation, and an explanation of
it is given in § 10. From it we learn that the effect of the tides is always to cause a
diminution of the inclination—at least so long as the periodic time of the satellite,
as measured in rotations of the planet, is pretty long. The following considerations
show that this must generally be the case. It appears from the paper on “Pre-
cession ” that the effect of tidal friction is to cause a continual transference of moment
of momentum from that of terrestrial rotation to that of orbital motion; hence it
follows that the normal to the lunar orbit must continually approach the normal to
the invariable plane. It is true that the rate of this approach will be to some
extent counteracted by a parallel increase in the inclination of the earth’s axis to the
same normal. It will appear later that if the moon were to revolve very rapidly
round the earth, and if the viscosity of the earth were great, then this counteracting
influence might be sufficiently great to cause the inclination to increase.* This
possible increase of inclination is not exhibited in fig. 5, because it illustrates the case
where the sidereal month is 15 days long. .

In § 11 it is shown that, for case (il.), the rate of variation of the mean dlstance,
obliquity, and terrestrial rotation follow the laws investigated in * Precession,” but
that the angle, there called the obliquity of the ecliptic, must be interpreted as the
angle between the plane of the lunar orbit and the equator.

In § 12 I return again to case (i) and find the laws governing the rate of increase
of the obliquity of the ecliptic, and of decrease of the diurnal rotation of the earth.
The results differ so little from those discussed in “ Precession ” that they need not be
further referred to here. :

Up to this point no approximation has been admitted with regard to smallness
either in the obliquity or the inclination of the orbit, but mathematical ditficulties
have rendered it expedient to assume their smallness in the following part of the
paper.

§ 31. Summary of Part I11.

Part I11I. is devoted to case (iii.) of our first problem. It was found necessary in
the first instance to consider the theory of the secular inequalities in the motion of a
moon revolving about an oblate rigid earth, and perturbed by a second satellite, the
sun. The sun being large and distant, the ecliptic is deemed sensibly unaffected, and
is taken as the fixed plane of reference.

The proper plane of the lunar orbit has been already referred to, but I was here led

* See the abstract of thls paper, Proc. R.S., No. 200, 1879, for certain general considerations bezmug
on this case.



868 MR. G. H. DARWIN ON THE SECULAR CHANGES IN

to introduce a new conception, viz.: that of a second proper plane to which the
motion of the earth is referred. It is proved that the motion of the system may then
be defined as follows :— .

The two proper planes intersect one another on the ecliptic, and their common
node regredes on the ecliptic with a slow precessional motion. The lunar orbit and
the equator are respectively inclined at constant angles to their proper planes, and
their nodes on their respective planes also regrede uniformly and at the same speed.
The motions are timed in such a way that when the inclination of the orbit to the
ecliptic is at the maximum, the obliquity of the equator to the ecliptic is at the
minimum, and vice versd.

Now let us call the angular velocity with which the nodes of the orbit would
regrede on the ecliptic, if the earth were spherical, the nodal velocity.

And let us call the angular velocity with which the common node of the orbit and
equator would regrede on the invariable plane of the system, if the sun did not exist,
the precessional velocity.

If the various obliquities and inclinations be not large, the precessional velocity is
in fact the purely lunar precession. '

Then if the nodal velocity be large compared with the precessional velocity, the
lunar proper plane is inclined at a small angle to the ecliptic, and the equator is
inclined at a small angle to the earth’s proper plane.

This is the case with the earth, moon, and sun at present, because the nodal period
is about 18% years, and the purely lunar precession would have a period of between
20,000 and 30,000 years. It is not usual to speak of a proper plane of the earth,
because it is more simple to conceive a mean equator, about which the true equator
nutates with a period of about 181 years.

Here the precessional motion of the two proper planes is the whole luni-solar
precession, and the regression of the nodes on the proper planes is practically the
same as the regression of the lunar nodes on the ecliptic.

A comparison of my result with the formula ordinarily given will be found at the
end of § 13, and in a note to § 18.

Secondly, if the nodal velocity be small compared with the precessional velocity,
the lunar proper plane is inclined at a small angle to the earth’s proper plane.

Also the inclination of the equator to the earth’s proper plane bears very nearly
the same ratio to the inclination of the orbit to the moon’s proper plane as the orbital
moment of momentum of the two bodies bears to that of the rotation of the earth.

In the planets of the solar system, on account of the immense mass of the sun, the
nodal velocity is never small compared with the precessional velocity, unless the
satellite moves with a very short periodic time round its planet, or unless the satellite
be very small ; and if either of these be the case the ratio of the two moments of
momentum is small.

Hence it follows that in our system, if the nodal velocity be small compared with
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the precessional velocity, the proper plane of the satellite is inclined at a small angle
to the equator of the planet. The rapidity of motion of the satellites of Mars,
Jupiter, and of some of the satellites of Saturn, and their smallness compared with
their planets, necessitates that their proper planes should be inclined at small angles
to the equators of the planets. A system may, however, be conceived in which the
two proper planes are inclined at a small angle to one another, but where the
satellite’s proper plane is not inclined at a small angle to the planet’s equator.

In the case now before us the regression of the common node of the two proper
planes is a sort of compound solar precession of the planet with its attendant moon,
and the regression of the two nodes on their respective proper planes is very nearly
the same as the purely lunar precession on the invariable plane of the system. Thus
there are two precessions, the first of the system as a whole, and the second going on
within the system, almost as though the external precession did not exist.

If the nodal velocity be of nearly equal speed with the precessional velocity, the
regression of the proper planes and of tlie nodes on those planes are each a compound
phenomenon, which it is rather hard to disentangle without the aid of analysis. Here
none of the angles are necessarily small.

It appears from the investigation in “ Precession” that the effect of tidal friction is
that, on tracing the changes of the system backwards in time, we find the moon getting
nearer and nearer to the earth. The result of this is that the ratio of the nodal
velocity to the precessional velocity continually diminishes retrospectively ; it is
initially very large, it decreases, then becomes equal to unity, and finally is very
small. Hence it follows that a retrospective solution will show us the lunar proper
plane departing from its present close proximity to the ecliptic, and gradually passing
over until it becomes inclined at a small angle to the earth’s proper plane.

Therefore the problem, involved in the history of the obliquity of the ecliptic and in
the inclination of the lunar orbit, is to trace the secular changes in the pair of proper
planes, and in the inclinations of the orbit and equator to their respective proper planes.

The four angles involved in this system are however so inter-related, that it is only
necessary to consider the inclination of one proper plane to the ecliptic, and of one
plane of motion to its proper plane, and afterwards the other two may be deduced. I
chose as the two, whose motions were to be traced, the inclination of the lunar orbit to
its proper plane, and the inclination of the earth’s proper plane to the ecliptic ; and
afterwards deduced the inclination of the moon’s proper plane to the ecliptic, and the
inclination of the equator to the earth’s proper plane.

The next subject to be considered (§ 14 to end of Part IT1.) was the rate of change
of these two inclinations, when both moon and sun raise frictional tides in the earth.
The change takes place from two sets of causes :—

First because of the secular changes in the moon’s distance and periodic time, and in
the earth’s rotation and ellipticity of figure—for the earth must always remain a figure
of equilibrium.

MDCCCLXXX. 5T
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The nodal velocity varies directly as the moon’s periodic time, and it will decrease
as we look backwards in time. '

The precessional velocity varies directly as the ellipticity of the earth’s figure (the
earth being homogeneous) and inversely as the cube of the moon’s distance, and
inversely as the earth’s diurnal rotation ; it will therefore increase retrospectively.
The ratio of these two velocities is the quantity on which the position of the proper
planes principally depends.

The second cause of disturbance is due directly to the tidal interaction of the three
bodies.

The most prominent result of this interaction is, that the inclination of the lunar
orbit to its proper plane in general diminishes as the time increases, or increases
retrospectively. This statement may be compared with the results of Part IL., where
the ecliptic was in effect the proper plane. The retrospective increase of inclination
may be reversed however, under special conditions of tidal disturbance and lunar
periodic time.

Also the inclination of the earth’s proper plane to the ecliptic in general increases
with the time, or diminishes retrospectively. This is exemplified by the results of
the paper on “ Precession,” where the obliquity of the ecliptic was found to diminish
retrospectively. This retrospective decrease may be reversed under special conditions.

It is in determining the effects of this second set of causes, that we have to take
account of the effects of tidal disturbance on the motions of the nodes of the orbit and
equator on the ecliptic.

After a long analytical investigation, equations are found in (224), which give the
rate of change of the positions of the proper planes, and of the inclinations thereto.

It is interesting to note how these equations degrade into those of case (i.) when
the nodal velocity is very large compared with the precessional velocity, and into those
of case (1.) when the same ratio is very small.

In order completely to define the rate of change of the configuration of the system,
there are two other equations, one of which gives the rate of increase of the square
root of the moon’s distance (which I called in a previous paper the equation of tidal
reaction), and the other gives the rate of retardation of the earth’s diurnal rotation
(which I called before the equation of tidal friction). For the latter of these we
may however substitute another equation, in which the time is not involved, and
which gives a relationship between the diurnal rotation and the square root of the
moon’s distance. It is in fact the equation of conservation of moment of momentum
of the moon-earth system, as modified by the solar tidal friction. This is the equa-
tion which was extensively used in the paper on “ Precession.”

Except for the solar tidal friction and for the obliquity of the orbit and equator, this
equation would be rigorously independent of the kind of frictional tides existing in the
earth. If the obliquities are taken as small, they do not enter in the equation, and in
the present case the degree of viscosity of the earth only enters to an imperceptible
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degree, at least when the day is not very nearly equal to the sidereal month. When
that relation between the day and month is very nearly fulfilled, the equation may
become largely affected by the viscosity ; and I shall return to this point later, while
for the present I shall assume the equation to give satisfactory results.

This equation of conservation of moment of momentum enables us to compute as
many parallel values of the day and month as may be desired.

Now we have got the time-rates of change of the inclinations of the lunar orbit to
its proper plane, and of the earth’s proper plane to the ecliptic, and we have also the
time-rate of change of the square root of the moon’s distance. Hence we may obtain
the square-root-of-moon’s-distance-rate (or shortly the distance-rate) of change of the
two inclinations.

The element of time is thus entirely eliminated ; and as the period of time required
for the changes has been adequately considered in the paper on ¢ Precession,” no
further reference will here be made to time.

In a precisely similar manner the equations giving the time-rate in the cases (i.) and
(ii.) of our first problem, may be replaced by equations of distance-rate.

Up to this point terrestrial phraseology has been used, but there is nothing which
confines the applicability of the results to our own planet and satellite. '

§ 82. Summary of Part IV.

We now, however, pass to Part IV., which contains a retrospective integration of
the differential equations, with special reference to the earth, moon, and sun. The
mathematical difficulties were so great that a numerical solution was the only one
found practicable.* The computations made for the paper on “Precession” were used
as far as possible.

The general plan followed was closely similar to that of the previous paper, and
consists in arbitrarily choosing a number of values for the distance of the moon from
the earth (or what amounts to the same thing for the sidereal month), and then
computing all the other elements of the system by the method of quadratures.

The first case considered is where the earth has a small viscosity. And here it may
be remarked that although the solution is only rigorous for infinitely small viscosity,
yet it gives results which are very nearly true over a considerable range of viscosity.
This may be seen to be true by a comparison of the results of the integrations in
§§ 15 and 17 of “ Precession,” in the first of which the viscosity was not at all small ;
also by observing that the curves in fig. 2 of “ Precession” do not differ materially from
the curve of sines until e (the f of this paper) is greater than 25°; also by noting a
similar peculiarity in figs. 4 and 5 of this paper. The hypothesis of large viscosity
does not cover nearly so wide a field.

% An analytical solution in the case of a single satellite, where the viscosity of the planet is small, is
given in Proc. Roy. Soc., No. 202, 1880.

5T 2
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That which we here call a small viscosity is, When estimated by terrest1 ial standards,
very great (see the summary of “Precession ”).

To return, however, to the case in hand :—We begin with the present configuration
of "the three bodies, when the moon’s proper plane is almost identical with the ecliptic,
and when the inclination of the equator to its proper plane is very small. This is the
case (i) of the first problem :—-

It appears that the solution of ¢ Precession” is sufficiently accurate for this stage of
the solution, and accordingly the parallel values of the day, month, and obliquity of
the earth’s proper plane (or mean equator) are taken from § 17 of that paper; but the
change in the new element, the inclination of the lunar orbit, has to be computed.

The results of the solution are given in Table I., § 18, to which the reader is referred.

This method of solution is not applicable unless the lunar proper plane is inclined at
a small angle to the ecliptic, and unless the equator is inclined at a small angle to its
proper plane. Now at the beginning of the integration, that is to say with a homo-
genous earth, and with the moon and sun in their present configuration, the moon’s
proper plane is inclined to the ecliptic at 13", and the equator is inclined to the earth’s
proper plane at 12” (for the heterogeneous earth these angles are about 8”3 and 97-0);
and at the end of this integration, when the day is 9 hrs. 55 m. and the month
8:17 m. s. days, the former angle has increased to 57" 81”7, and the latter to 22" 42”.
These last results show that the nutations of the system have already become con-
siderable, and although subsequent considerations show that this method of solution
has not been overstrained, yet it here becomes advisable to carry out the solution into
the more remote past by the methods of Part II1.

It was desirable to postpone the transition as long as possible, because the method
used up to this point does not postulate the smallness of the inclinations, whereas the
subsequent procedure does make that supposition.

In § 19 the solution is continued by the new method, the viscosity of the earth still
being supposed to be small. After laborious computations results are obtained, the
physical meaning of which is embodied in Table VIII. The last two columns give the
periods of the two precessional motions by which the system is affected. The preces-
sion of the pair of proper planes is, as it were, the ancestor of the actual luni-solar
precession, and the revolution of the two nodes on their proper planes is the ancestor
of the present revolution of the lunar nodes on the ecliptic, and of the 19-yearly
nutation of the earth’s axis.

This table exhibits a continued approach of the two proper planes to one another, so
that at the point where the integration is stopped they are only separated by 1° 18”;
at the present time they are of course separated by 23° 28,

The most remarkable feature in this table is that (speaking retrospectively) the
inclination of the lunar orbit to its proper plane first increases, then diminishes, and
then increases again.

If it were desired to carry the solution still further back, we might without much
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error here make the transition to the method of case (ii.) of the first problem, and neg-
lecting the solar influence entirely, refer the motion to the invariable plane of the
moon-earth system. This invariable plane would have to be taken as somewhere
between the two proper planes, and therefore inclined to the ecliptic at about 11° 45 ;
the invariable plane would then really continue to have a precessional motion due to
the solar influence on the system formed by the earth and moon together, but this
would not much affect the treatment of the plane as though it were fixed in space.

We should then have to take the obliquity of the equator to the invariable plane as
about 8°, and the inclination of the lunar orbit to the same plane as about 5° 30"

In the more remote past the obliquity of the equator to the invariable plane would
go on diminishing, but at a slower and slower rate, until the moon’s period is 12 hours
and the day is 6 hours, when it would no longer diminish ; and the inclination of the
orbit to the invariable plane would go on increasing, until the day and month come to
an identity, and at an ever increasing rate.

It follows from this, that if we continued to trace the changes backwards, until the
day and month are identical, we should find the lunar orbit inclined at a consider-
able angle to the equator. If this were necessarily the case, it would be difficult to
believe that the moon is a portion of the primeval planet detached by rapid rotation,
or by other causes. But the previous results are based on the hypothesis that the
‘viscosity of the earth is small, and it therefore now became important to consider
how a different .hypothesis concerning the constitution of the earth might modify the
results. _ :

In §20 the solution of the problem is resumed, at the point where the methods of
Part ITI. were first applied, but with the hypothesis that the viscosity of the earth is
very large, instead of very small. The results for any intermediate degree of viscosity
must certainly lie between those found before and those to be found now.

Then having retraversed the same ground, but with the new hypothesis, I found
the results given in Table XV.

The inclinations of the two proper planes to the ecliptic are found to be very nearly
the same as in the case of small viscosity. But the inclination of the lunar orbit to
its proper plane increases at first and then continues diminishing, without the subse-
quent reversal of motion found in the previous solution:

If the solution were carried back into the more remote past, the motion being
referred to the invariable plane, we should tind both the obliquity of the equator and
the inclination of the orbit diminishing at a rate which tends to become ¢nfinte, if the
viscosity is ¢nfinitely great. Infinite viscosity is of course the same as perfect rigidity,
and if the earth were perfectly rigid the system would not change at all. The true
interpretation to put on this result is that the rate of change of inclination becomes
large, if the viscosity be large. This diminution would continue until the day was
6 hours and the month 12 hours. For an analysis of the state of things further back
than this, the reader is referred to § 20.
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From this it follows, that by supposing the viscosity large enough we may make the
obliquity and inclination to the invariable plane as small as we please, by the time
that state is reached in which the month is equal to twice the day.

Hence, on the present hypothesis, we trace the system back until the lunar orbit is
sensibly coincident with the equator, and the equator is inclined to the ecliptic at an
angle of 11° or 12°.

It is probable that in the still more remote past the plane of the lunar orbit would
not have a tendency to depart from that of the equator. It is not, however, expedient
to attempt any detailed analysis of the changes further back, for the following reason.
Suppose a system to be unstable, and that some infinitesimal disturbance causes the
equilibrium to break down ; then after some time it is moving in a certain way. Now
suppose that from a knowledge of the system we endeavour to compute backwards
from the observed mode of its motion at that time, and so find the condition from
which the observed state of motion originated. Then our solution will carry us back
to a state very near to that of instability, from which the system really departed,
but as the calculation can take no account of the infinitesimal disturbance, which
caused the equilibrium to break down, it can never bring us back to the state which
the system really had. And if we go on computing the preceding state of affairs, the
solution will continue to lead us further and further astray from the truth. Now
this, I take it, is likely to have been the case with the earth and moon ; at a certain
period in the evolution (viz.: when the month was twice the day) the system probably
became dynamically unstable, and the equilibrium broke down. Thus it seems more
likely that we have got to the truth, if we cease the solution at the point where the
lunar orbit is nearly coincident with the equator, than by going still further back.

In § 21, fig. 7, is given a graphical illustration of the distance-rate of change in the
inclinations of the lunar orbit to its proper plane, and of the earth’s proper plane to the
ecliptic ; the dotted curves refer to the hypothesis of large viscosity, and the firm-
curves to that of small viscosity.

The figure is explained and discussed in that section; I will here only-draw
attention to the wideness apart of the two curves illustrative of the rate of change
of the inclination of the lunar orbit. This shows how much influence the degree
of viscosity of the earth must have had on the present inclination of the lunar orbit
to the ecliptic. .

Tt is particularly interesting to observe that in the case of small viscosity this curve
rises above the horizontal axis. If this figure is to be interpreted retrospectively,
along with our solution, it must be read from left to right, but if we go with the time,
instead of against it, from right to left.

Now if the earth had had in its earlier history infinitely small viscosity, and if the
moon had moved primitively in the equator, then until the evolution had reached the
point represented by P, the lunar orbit would have always remained sensibly coin-
cident with its proper plane. Then in passing from I’ to € the inclination of the
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orbit to its proper plane would have increased, but the whole increase could not have
amounted to more than a few minutes of arc. At the point P the day is 7 hrs. 47 m.
in length, and the month 325 m.s. days in length ; at the point @ the day is
8 hrs. 36 m., and the month 520 m. s. days. From @ down to the present state this
small inclination would have always decreased.

If then the earth had had small viscosity throughout its evolution, the lunar orbit
would at present be only inclined at a very small angle to the ecliptic. But it is
actually inclined at about 5° 9’, hence it follows that while the hypothesis of small
viscosity is competent to explain some inclination, it cannot explain the-actually
existing inclination.

It was shown in the papers on ““Tides” and “ Precession ” that, if the earth be not
at present perfectly rigid or perfectly elastic, its viscosity must be very large. And it
was shown in ¢ Precession” that if the viscosity be large, the obliquity of the ecliptic
must at present be decreasing. Now it will be observed that in resuming the inte-
gration with the hypothesis of large viscosity, the solution of the first method with
the hypothesis of small viscosity was accepted as the basis for continuing the inte-
gration with large viscosity. This appears at first sight somewhat illogical, and to
be strictly correct, we ought to have taken as the initial inclination of the earth’s
proper plane to the ecliptic, at the beginning of the application of the methods of
Part III. to the hypothesis of large viscosity, some angle probably a little less than
23L1°* instead of 17° This would certainly disturb the results, but I have not thought
it advisable to take this course for the following reasons.

It is probable that at the present time the greater part, if not the whole of the
tidal friction is due to oceanic tides, and not to bodily tides. If the ocean were friction-
less, it would be low tide under the moon ; consequently the effects of fluid friction
must be to accelerate, not retard, the ocean tides.t Then in order to apply our present
analysis to the case of oceanic tidal friction, that angle which has been called the lag
of the tide must be interpreted as the acceleration of the tide.

‘We know that the actual friction in water is small, and hence the tides of long
period will be less affected by friction than those of short period; thus the effects of
fluid tidal friction will probably be closely analogous to those resulting from the
hypothesis of small viscosity of the whole earth and bodily tides. On the other hand,
it is probable that the earth was once more plastic than at present, either superficially
or throughout its mass, and therefore it seems probable that the bodily tides, even if
small at present, were once more considerable. I think therefore that on the whole

* In the present configuration of the earth, moon, and sun, the obliquity will decrease, if the viscosity
be very large. But if we integrate backwards this retrospective increase of obliquity would soon be con-
verted into a decrease. Thus at the end of “the first period of integration,” the obliquity would be a
little greater than 234°, but by the end of the ““second period” it would probably be a little less than
233°. It is at the end of the “second period ” that the method of Part IIL. is first applied.

1 Otherwise the lunar attraction on the tides would accelerate the earth’s rotation—a clear violation of
the principles of energy.
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we shall be more nearly correct in supposing that the terrestrial nucleus possessed a
high degree of stiffness in the earliest times, and that it will be best to apply the
hypothesis of small viscosity to the more modern stages of the evolution, and that of
large viscosity to the more ancient.

At any rate this appears to be a not improbable theory, and one which accords very
well with the present values of the obliquity of the ecliptic, and of the inclination of
the lunar orbit.

§ 83. On the wnutial condition of the earth and moon.

It was remarked above that the equation of conservation of moment of momentum,
as modified by the effects of solar tidal friction, could only be regarded as practically
independent of the degree of viscosity of the earth, so long as the moon’s sidereal
period was not nearly equal to the day; and that if this relationship were nearly
satisfied, the equation which we have used throughout might be considerably in error.
- Now in the paper on “ Precession ” the system was traced backwards, in much the
same way as has been done here, until the moon’s tide-generating influence was very
large compared with that of the sun; the solar influence was then entirely neglected,
and the equation of conservation of moment of momentum was used for determining
that initial condition, where the month and day were identical, from which the system
started its course of development.* The period of revolution of the system in its
initial configuration was found to be about 5% hours. I now however see reason to
believe that the solar tidal friction will make the numerical value assigned to this
period of revolution considerably in error, whilst the general principle remains almost
unaffected.  This subject is considered in § 22.
~ The necessity of correction arises from the assumption that because the moon is
retrospectively getting nearer and nearer to the earth, therefore the effects of lunar
tidal friction must more and more preponderate over those of solar tidal friction, so
that if the solar tidal friction were once negligeable it would always remain so.
But tidal friction depends on two elements, viz. : the magnitude of the tide-gen-
erating influence, and the relative motion of the two bodies. Now whilst the tide-
generating influence of the moon does become larger and larger, as we approach the
critical state, yet the relative motion of the moon and earth becomes smaller and
smaller ; on the other hand the tide-generating influence of the sun remains sensibly
constant, whilst the relative motion of the earth and sun slightly increases.t

From this it follows that the solar tidal friction must ultimately become actually
‘more important than the lunar, notwithstanding the close proximity of the moon to
the earth.

* See also a paper on “ The Determination of the Secular Effects of Tidal Friction by a Graphical
Method,” Proc. Roy. Soc., No. 197, 1879,

+ In the paper on “ Precession ” it was stated in § 18 that this must be the case, but I did not at that
time perceive the importance of this consideration
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The complete investigation of this subject involves considerations which will require
special treatment. In §22 it is only so far considered as to show that, when there
is identity of the periods of revolution of the moon and earth, the angular velocity
of the system must be much greater than that given by the solution in § 18 of
“ Precession.”

When the earth rotates in 5% hours, the motion of the moon relatively to the earth’s
surface would already be pretty slow. If the system were traced into the more remote
past, the earth’s rotation would be found getting more and more rapid, and the moon’s
orbital angular velocity also continually increasing, but ever approximating to identity
with the earth’s rotation.

When the surfaces of the two bodies are almost in contact, the motion of the moon
relatively to the earth’s surface would be almost insensible. This appears to point to
the break-up of the primeval planet into two parts, in consequence of a rotation so
rapid as to be inconsistent with an ellipsoidal form of equilibrium.

Is it then a mere coincidence that the shortest period of vevolution, with which a
spheroid of the same mean density as the earth could subsist in the ellipsoidal form,
is 2 hrs. 24 m. ; whilst if KepLER'S law were to hold true, and if the moon were to
revolve round the earth in the same period, the surfaces of the two bodies would just
graze one another ?

§ 84. Summary of Parts V. and V1.

I now come to the second of the two problems, where the moon moves in an
eccentric orbit, always coincident with the ecliptic.

In § 28 it is shown that the tides raised by any one satellite can produce no secular
change in the eccentricity of the orbit of any other satellite; thus the eccentricity
and the mean distance are in this respect on the same footing.

It was found to be more convenient to consider the ellipticity of the orbit instead
of the eccentricity. In §24 (289) and (290), are given the time-rates of increase of
the ellipticity and of the square root of mean distance. In § 25 the result for the
ellipticity is applied to the case where the earth is viscous, and its physical meaning is
graphically illustrated in fig. 8.

This figure shows that in general the ellipticity will increase with the time ; but if
the obliquity of the ecliptic be nearly 90° or if the viscosity be so great that the earth
Is very nearly rigid, the ellipticity will diminish. This last result is due to the rising
into prominence of the effects of the elliptic monthly tide.

If the viscosity be very small the equation is reducible to a very simple form, which
is given in (291). From (291) we see that if the obliquity of the ecliptic be zero, the
ellipticity will either increase or diminish, according as 18 rotations of the planet take
a shorter or a longer time than.11 revolutions of the satellite. From this it follows
that in the history of a satellite revolving about a planet of small viscosity, the circular
orbit is dynamically stable until 11 months of the satellite have become longer than

MDCCCLXXX, 5 U
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18 days of the planet. Since the day and month start from equality and end in
equality, it follows that the eccentricity will rise to a maximum and ultimately
diminish again.

Tt is also shown that if a satellite be started to move in a circular orbit with the
same periodic time as that of the planet’s rotation (with maximum energy for given
moment of momentum), then if infinitesimal eccentricity be given to the orbit the
satellite will ultimately fall into the planet; and if, the orbit being circular, infini-
tesimal decrease of distance be given the satellite will fall in, whilst if infinitesimal
increase of distance be given the satellite will recede from the planet. Thus this con-
figuration, in which the planet and satellite move as parts of a single rigid body, has a
complex instability ; for there are two sorts of disturbance which cause the satellite
to fall in, and one which causes it to recede from the planet.™

If the planet have very large viscosity the case is much more complex, and it is
examined in detail in § 25.

It will here only be stated that the eccentricity will diminish if 2 months of the
satellite be longer than 3 days of the planet, but will increase if the 2 months be
shorter than 3 days; also the rate of increase of eccentricity tends to become infinite,
for infinitely great viscosity, if the 2 months are equal to the 3 days.

These results are largely due to the influence of the elliptic monthly tide, and with
most of the satellites of the solar system, this is a very slow tide compared with the
semi-diurnal tides ; therefore it must in general be supposed that the viscosity of the
planet makes a close approximation to perfect rigidity, in order that this statement
may be true.

The infinite value of the rate of change of eccentricity is due to the speed of the
slower elliptic semi-diurnal tide being infinitely slow, when 2 months are equal to
3 days. The result is physically absurd, and its true meaning is commented on
in § 25. '

In § 26 the time-rate of change of the obliquity of the planet’s equator, and of the
diurnal rotation is investigated, when the orbits of the tide-raising satellites are
eccentric ; the only point of general interest in the result is, that the rate of change of
obliquity and the tidal friction are both augmented by the eccentricity of the orbit,
as was foreseen in the paper on “ Precession.”

In § 27 it is stated that the effect of the evectional tides is such as to diminish the
eccentricity of the orbit, but the formula given shows that the effect cannot have
much importance, unless the moon be very distant from the earth.

% Added July, 1880.—This passage appeared to the referee, requested by the R. S. to report on this
paper, to be rather obscure, and it has therefore been somewhat modified. To further elucidate the point
I have added in an appendix a graphical illustration of the effects of eccentricity, similar to those given
in No. 197 of Proc. Roy. Soc., 1879.

See also the abstract of this paper in the Proc. Roy. Soc., No. 200, 1879, for certain general con-

siderations bearing on the problem of the eccentricity.
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In Part VI. the equations giving the rate of change of eccentricity are integrated,
on the hypothesis that the earth has small viscosity. _

The first step is to convert the time-rates of change into distance-rates, and thus
to eliminate the time, as in the previous integrations.

The computations made for the paper on ¢ Precession” were here made use of, as
far as possible.

The results of the retrospective integration are given in Table XVI., § 28. This
table exhibits the eccentricity falling from its present value of {sth down to about
Tosooth, so that at the end the orbit is very nearly circular.

The integration in the case of large viscosity is not carried out, because the actual
degree of viscosity will exercise so very large an influence on the result.

If the viscosity were nfinitely large, we should find the eccentricity getting larger
and larger retrospectively, and ultimately becoming #nfinite, when 2 months were equal
to 8 days. This result is of course absurd, and merely represents that the larger the
viscosity, the larger would be the eccentricity. On the other hand, if the viscosity
were merely large, we might find the eccentricity decreasing at first, then stationary,
then increasing until 2 months were equal to 3 days, and then decreasing again.

It follows therefore that various interpretations may be put to the present eccen-
tricity of the lunar orbit.

If, as is not improbable, the more recent changes in the configuration of our system
have been chiefly brought about by oceanic tidal friction, whilst the earlier changes
were due to bodily tidal friction, with considerable viscosity of the planet, then, sup-
posing the orbit to have been primevally circular, the history of the eccentricity must
have been as follows : first an increase to a maximum, then a decrease to a minimum,
and finally an increase to the present value. There seems nothing to tell us how large
the early maximum, or how small the subsequent minimum of eccentricity may have
been.

VIIL

REVIEW OF THE TIDAL THEORY OF EVOLUTION AS APPLIED TO THE EARTH
AND THE OTHER MEMBERS OF THE SOLAR SYSTEM.

I will now collect the various results so as to form a sketch of what the previous
investigations show as the most probable history of the earth and moon, and in order
to indicate how far this history is the result of calculation, references will be given to
the parts of my several papers in which each point is especially considered.

We begin with a planet, not very much more than 8,000 miles in diameter,” and
probably partly solid, partly fluid, and partly gaseous. This planet is rotating about

* ¢« Precession,” § 24.
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an axis inclined at about 11° or 12° to the normal to the ecliptic,” with a period of
from 2 to 4 hours,t and is revolving about the sun with a period not very much
shorter than our present year.}

The rapidity of the planet’s rotation causes so great a compression of its figure that
it cannot continue to exist in an ellipsoidal form§ with stability ; or else it is so nearly
unstable that complete instability is induced by the solar tides.||

The planet then separates into two masses, the larger being the earth and the
smaller the moon. I do not attempt to define the mode of separation, or to say
whether the moon was initially more or less annular. At any rate it must be assumed
that the smaller mass became more or less conglomerated, and finally fused into a
spheroid—perhaps in consequence of impacts between its constituent meteorites, which
were once part of the primeval planet. Up to this point the history is largely specu-
lative, for although the limiting ellipticity of form of a rotating mass of fluid is known,
yet the conditions of its stability, and @ fortior: of its rupture, have not as yet been
investigated.

We now have the earth and the moon nearly in contact with one another, and
rotating nearly as though they were parts of one rigid body.

This is the system which has been made the subject of the present dynamical
investigation. :

As the two masses are not rigid, the attraction of each distorts the other; and if
they do not move rigorously with the same periodic time, each raises a tide in the
other. Also the sun raises tides in both. ‘

In consequence of the frictional resistance to these tidal motions, such a system is
dynamically unstable.T If the moon had moved orbitally a little faster than the earth
rotates she must have fallen back into the earth; thus the existence of the moon
compels us to believe that the equilibrium broke down by the moon revolving orbit-
ally a little slower than the earth rotates. Perhaps the actual rupture into two
masses was the cause of this slower motion ; for if the detached mass retained the
same moment of momentum as it had initially, when it formed a part of the primeval
planet, this would, T think, necessarily be the case.

In consequence of the tidal friction the periodic time of the moon (or the month)
increases in length, and that of the earth’s rotation (or the day) also increases; but
the month increases in length at a much greater rate than the day.

* This at least appears to be the obliquity at the earliest stage to which the system has been traced
back in detail, but the effect of solar tidal friction would make the obliquity primevally less than this, to
an uncertain and perhaps considerable amount. v

+ ¢ Precession,” § 18, and Part IV, § 22.

1 “Precession,” § 19.

§ ¢ Precession,” § 18, and Part IV, § 22.

|| Summary of “ Precession.”

€ «Secular Effects,” &e., Proc. Roy. Soc., 197, 1879; and “ Precession,” § 18.
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At some early stage in the history of the system, the moon has conglomerated into
a spheroidal form, and has acquired a rotation about an axis nearly parallel with that
of the earth. We will now follow the moon itself for a time.

The axial rotation of the moon is retarded by the attraction of the earth on the tides
raised in the moon, and this retardation takes place at a far greater rate than the
similar retardation of the earth’s rotation.* As soon as the moon rotates round her
axis with twice the angular velocity with which she revolves in her orbit, the position
of her axis of rotation (parallel with the earth’s axis) becomes dynamically unstable.t
The obliquity of the lunar equator to the plane of the orbit increases, attains a
‘maximum, and then diminishes. Meanwhile the lunar axial rotation is being reduced
towards identity with the orbital motion.

Finally her equator is nearly coincident with the plane of her orbit, and the attrac-
tion of the earth on a tide, which degenerates into a permanent ellipticity of the lunar
equator, causes her always to show the same face to the earth.] LAPLACE has shown
that this is a necessary consequence of the elliptic form of the lunar equator.

All this must have taken place early in the history of the earth, to which I now
return, '

" As the month increases in length the lunar orbit becomes eccentric, and the eccen-
tricity reaches a maximum when the month occupies about a rotation and a half of the
earth. The maximum of eccentricity is probably not large. ~After this the eccentricity
diminishes.§

The plane of the lunar orbit is at first practically identical with the earth’s equator,
but as the moon recedes from the earth the sun’s attraction begins to make itself felt.
Here then we must introduce the conception of the two ideal planes (here called the
proper planes), to which the motion of the earth and moon must be referred.|] The
lunar proper plane is at first inclined at a very small angle to the earth’s proper plane,
and the orbit and equator coincide with their respective proper planes.

As soon as the earth rotates with twice the angular velocity with which the moon
revolves in her orbit, a new instability sets in. The month is then about 12 of our
present hours, and the day is about 6 of our present hours in length.

The inclinations of the lunar orbit and of the equator to their respective proper planes

* ¢ Precession,” § 23.

T« Precession,” § 17. It is of course possible that the lunar rotation was very rapidly reduced by the
earth’s attraction on the lagging tides, and was never permitted to be more than twice the orbital motion.
In this case the lunar equator has never deviated much from the plane of the orbit.

1 Henmneorrz, I believe, first suggested the reduction of the moon’s axial rotation by means of tidal
friction.

§ Parts V. and VI. The exact history of the eccentricity is somewhat uncertain, because of the
uncertainty as to the degree of viscosity of the earth.

|| See Parts III. and IV. (and the summaries thereof in Part VIL) for this and what follows about
proper planes.
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increase. The inclination of the lunar orbit to its proper plane increases to a maximum
of 6° or 7°* and ever after diminishes; the inclination of the equator to its proper
plane increases to a maximum of about 2° 45°,% and ever after diminishes. The
maximum inclination of the lunar orbit to its proper plane takes place when the day is
a little less than 9 of our present hours, and the month a little less than 6 of our
present days. The maximum inclination of the equator to its proper plane takes
place earlier than this.

Whilst these changes have been going on, the proper planes have been themselves
changing in their positions relatively to one another and to the ecliptic. At first they
were nearly coincident with one another and with the earth’s equator, but they then
open out, and the inclination of the lunar proper plane to the ecliptic continually
diminishes, whilst that of the terrestrial proper plane continually increases.

At some stage the earth has become more rigid, and oceans have been formed, so
that it is probable that oceanic tidal friction has come to play a more important part
than bodily tidal friction.] If this be the case the eccentricity of the orbit, after
passing through a stationary phase, begins to increase again.

We have now traced the system to a state in which the day and month are increas-
ing, but at unequal rates; the inclination of the lunar proper plane to the ecliptic and
of the orbit to its proper plane are diminishing; the inclination of the terrestrial
proper plane to the ecliptic is increasing, and of the equator to its proper plane is
diminishing ; and the eccentricity of the orbit is increasing.

No new phase now supervenes§ and at length we have the system in its present
configuration. The minimum time in which the changes from first to last can have
taken place is 54,000,000 years. ||

In a previous paper it was shown that there are other collateral results of the vis-
cosity of the earth; for during this course of evolution the earth’s mass must have
suffered a screwing motion, so that the polar regions have travelled a little from west
to east relatively to the equator. This affords a possible explanation of the north and
south trend of our great continents.T Also a large amount of heat has been generated
by friction deep down in the earth, and some very small part of the observed increase
of temperature in underground borings may be attributable to this cause.®*

* Table XV., Part IV. .

t Found from the values in Table XV., and by a grapliical construction.

* Compare with “ Precession,” § 14, where the present secular acceleration of the moon’s mean motion
is considered. 7

§ Unless the earth’s proper plane (or mean equator) be now slowly diminishing in obliquity, as would
bo the case if the bodily tides are more potent than the oceanic ones. In any case this diminution must
ultimately take place in the far future.

| «Precession,” end of § 18.

9 ¢ Problems,” Part L.

*% « Problems,” Part I
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The preceding history might vary a little in detail, according to the degree of
viscosity which we attribute to the earth’s mass, and according as oceanic tidal friction
is or is not, now and in the more recent past, a more powerful cause of change
than bodily tidal friction.

The argument reposes on the imperfect rigidity of solids, and on the internal friction
of semi-solids and fluids ; these are vere cause. Thus changes of the kind here dis-
cussed must be going on, and must have gone on in the past. And for this history of
the earth and moon to be true throughout, it is only necessary to postulate a sufficient
lapse of time, and that there is not enough matter diffused through space to materially
resist the motions of the moon and earth in perhaps several hundred million years.

It hardly seems too much to say that granting these two postulates, and the
existence of a primeval planet, such as that above described, then a system would
necessarily be developed which would bear a strong resemblance to our own. ‘

A theory, reposing on vere cause, which brings into quantitative correlation the
lengths of the present day and month, the obliquity of the ecliptic, and the inclination
and eccentricity of the lunar orbit, must, I think, have strong claims to acceptance.

But if this has been the evolution of the earth and moon, then a similar process
must have been going on elsewhere. The present investigation has only dealt with a
single satellite and the sun, but the theory may of course be extended, with some
modification, to planets attended by several satellites. I will now therefore consider
some of the other members of the solar system.

A large planet has much more energy of rotation to be destroyed, and moment of
momentum to be redistributed than a small one, and therefore a large planet ought
to proceed in its evolution more slowly than a small one. Therefore we ought to find
the larger planets less advanced than the smaller ones.

The masses of such of the planets as have satellites are, in terms of the earth’s
mass, as follows: Mars =+%; Jupiter =301; Saturn =90; Uranus =14; Neptune =16.

Mars should therefore be furthest advanced in its evolution, and it is here alone in
the whole system that we find a satellite moving orbitally faster than the planet
rotates. This will also be the ultimate fate of our moon, because, after the moon’s
orbital motion has been reduced to identity with that of the earth’s rotation, solar
tidal friction will further reduce the earth’s angular velocity, the tidal reaction on the
moon will be reversed, and the moon’s orbital velocity will increase, and her distance
from the earth will diminish. But since the moon’s mass is very large, the moon must
recede to an enormous distance from the earth, before this reversal will take place.
Now the satellites of Mars are very small, and therefore they need only to recede a
short distance from the planet before the reversal of tidal reaction.®

* TIn the graphical method of treating the subject, “the line of momentum” will only just intersect
. ““the curve of rigidity.” See Proc. Roy. Soc., No. 197, 1879.
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The periodic time of the satellite Deimos is 30 hrs. 18 m.,* and as the period of rota-
tion of Marsis 24hrs. 37m.,t Deimos must be still receding from Mars, but very slowly.

The periodic time of the satellite Phobos in 7 hrs. 39 m. ; therefore Phobos must be
approaching Mars. It does not seem likely that it has ever been remote from the
planet.

The eccentricities of the orbits of both satellites are small, though somewhat
uncertain. The eccentricity of the orbit of Phobos appears however to be the larger
of the two.

If the viscosity of the planet be small, or if oceanic tidal friction be the principal
cause of change, both eccentricities are diminishing; but if the viscosity be large,
both are increasing. In any case the rate of change must be excessively slow. Aswe
have no means of knowing whether the eccentricities are increasing or diminishing
this larger eccentricity of the orbit of Phobos cannot be a fact of much importance
either for or against the present views. But it must be admitted that it is a slightly
unfavourable indication.

The position of the proper plane of a satellite is determined by the periodic time of
the satellite, the oblateness of the planet, and the sun’s distance. The inclination of
the orbit of a satellite to its proper plane is not determined by anything in the system.:
Hence it is only the inclination of the orbit which can afford any argument for or
against the theory.

The proper planes of both satellites are necessarily nearly coincident with the
equator of the planet; but it is in accordance with the theory that the inclinations of
the orbits to their respective proper planes should be small.}

Any change in the obliquity of the equator of Mars to the plane of his orbit must
be entirely due to solar tides. The present obliquity is about 27°, and this points also
to an advanced stage of evolution—at least if’ the axis of the planet was primitively
at all nearly perpendicular to the ecliptic.

We now come to the system of Jupiter.

This enormous planet is still rotating in about 10 hours, its axis is nearly perpen-
dicular to the ecliptic, and three of its satellites revolve in 7 days or less, whilst the
fourth has a period of 16 days 16 hrs. This system is obviously far less advanced
than our own. Y

The inclinations of the proper planes to Jupiter’s equator are necessarily small, but

* ¢Observations and Orbits of the Satellites of Mars,” by Asspn Harn. Washington Government
Printing Office, 1878.

+ According to KaIsER, as quoted by Scammr. ‘Ast. Nach.,” vol. 82, p. 333.

+ For the details of the Martian system, see the paper by Professor Asira HarL, above quoted.

With regard to the proper planes, see a paper by Prof. J. C. Apaus read before the R. Ast. Soc. on
Nov. 14, 1879, R. A. S. Month. Not. There is also a paper by Mr., MartH, ‘Ast. Nach.,” No. 2280, vol. 95,
Oct., 1879.
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the inclinations of the orbits to the proper planes appear to be very interesting from a
theoretical point of view. They are as follows :—*

Satellite. Il;clina,tion of orbit
o0 proper plane.
(o] / /"
First . . . . . . . 0 0 0
Second . . . . . . . 027 50
Third . . . . . . . 012 20
Fourth . . . . . . . 014 58

Now we have shown above that the orbit of a satellite is at first coincident with its
proper plane, that the inclination afterwards rises to a maximum, and finally declines.
If then we may assume, as seems reasonable, that the satellites are in stages of
evolution corresponding to their distances from the planet, these inclinations accord
well with the theory.

The eccentricities of the orbits of the two inner satellites are insensible, those of the
outer two small. = This does not tell strongly either for or against the theory, because
the history of the eccentricity depends considerably on the degree of viscosity of the
planet ; yet it on the whole agrees with the theory that the eccentricity should be
greater in the more remote satellites. It appears that the satellites of Jupiter always
present the same face to the planet, just as does our moon.t This was to be expected.

The case of Saturn is not altogether so favourable to the theory. The extremely
rapid rotation, the ring, and the short periodic time of the inner satellites point to an
early stage of development ; whilst the longer periodic time of the three outer satel-
lites, and the high obliquity of the equator indicate a later stage. Perhaps both views
may be more or less correct, for successive shedding of satellites would impart a
modern appearance to the system. It may be hoped that the investigation of the -
effects of tidal friction in a planet surrounded by a number of satellites may throw
some light on the subject. This I have not yet undertaken, and it appears to have
peculiar difficulties. It has probably been previously remarked, that the Saturnian
system bears a strong analogy with the solar system, Titan being analgous to Jupiter,
Hyperion and Iapetus to Uranus and Neptune, and the inner satellites being analo-
gous to the inner planets. Thus anything which aids us in forming a theory of the
one system will throw light on the other.

The details of the Saturnian system seem more or less favourable to the theory.

The proper planes of the orbits (except that of Iapetus) are nearly in the plane of the
ring, and the inclinations of all the orbits to their proper planes appear not to be large.

* HERSCHEL'S ¢ Astron.” Synoptic Tables in appendix.

+ HEerscHEL'S ¢ Astron.” 9th ed., § 546.

i An investigation, now (September, 1880) almost completed, seems to show pretty conclusively that
tidal friction cannot be in all cases the most important feature in the evolution of such systems as that
of Saturn and his satellites, and the solar system itself. I am not however led to reject the views
maintained in this paper.

MDCCCLXXX, 5 x
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HerscHEL gives the following eccentricities of orbit :—

Tethys ‘04 (%), Dione *02 (%), Rhea ‘02 (%), Titan *029314, Hyperion “ rather large;”
and he says nothing of the eccentricities of the orbits of the remaining three satellites.
If the dubious eccentricities for the first three of the above are of any value, we seem
to have some indication of the early maximum of eccentricity to which the analysis
points ; but perhaps this is pushing the argument too far. The satellite Iapetus
appears always to present the same face to the planet.*

Concerning Uranus and Neptune there is not much to be said, as their systems are
very little known ; but their masses are much larger than that of the earth, and their
satellites revolve with a short periodic time. The retrogade motion and high incli-
nation of the satellites of Uranus are, if thoroughly established, very remarkable.

The above theory of the inclination of the orbit has been based on an assumed small-
ness of inclination, and it is not very easy to see to what results investigation might
lead, if the inclination were large. It must be admitted however that the Uranian
system points to the possibility of the existence of a primitive planet, with either
retrograde rotation, or at least with a very large obliquity of equator.

It appears from this review that the other members of the solar system present
some phenomena which are strikingly favourable to the tidal theory of evolution,
and none which are absolutely condemnatory. Perhaps by further investigations
some light may be thrown on points which remain obscure.

APPENDIX.
(Added July, 1880.)

4 graphical dllustration of the effects of tidal friction when the orbit of the
satellite 1s eccentric.

In a previous paper (Proc. Roy. Soc., No. 197, 18791) a graphical illustration of the
effects of tidal friction was given for the case of a circular orbit. As this method
makes the subject more easily intelligible than the purely analytical method of the
present paper, I propose to add an illustration for the case of the eccentric orbit.

Consider the case of a single satellite, treated as a particle, moving in an elliptic
orbit, which is co-planar with the equator of the planet.

Let Ch be the resultant moment of momentum of the system. Then with the
notation of the present paper, by § 27 the equation of conservation of moment of
momentum is

71+%(1—17)=k

* HprscHEL'S ¢ Astron.” 9th ed., § 547.
+ The last sentence of this paper contains an erroneous statement; the line of zero eccentricity on the
energy surface is not a ridge as there stated. See the figure on p. 890.



THE ELEMENTS OF THE ORBIT OF A SATELLITE. 887

Here Cn is the moment of momentum of the planet’s rotation, and C£(1—n)/k is the
moment of momentum of the orbital motion; and the whole moment of momentum is
the sum of the two.

By the definitions of ¢ and % in § 2, CE
between unit masses at unit distance.

By a proper choice of units we may make uMm/,/u(M-+m) and C equal to unity.*
Then let = be equal to the square root of the satellite’s mean distance ¢, and the
equation of conservation of moment of momentum becomes

Wﬁ where p is the attraction

n+ax(l—m)=h . . . . . . . . . . (2

If in (@) 7y, the ellipticity of the orbit, be zero, we have equation (3) of the previous
paper, No. 197, 1879.

It is well known that the sum of the potential and kinetic energies in elliptic motion
is independent of the eccentricity of the orbit, and depends only on the mean distance.

Hence if CE be the whole energy of the system, we have (as in equations (2) and (4)
of the above paper, No. 197), with the present units

1
2E=n?—=

a?

Then if z be written for 2K, and if the value of n be substituted from (), we have

1
= {h—m(l-—’q)}ﬁ—% N 1)
This is the equation of energy of the system.

- * In the paper above referred to, and in another, Proc. Roy. Soc., No. 202, of 1880, the physical
meaning of the units adopted is scarcely adequately explained.

The units are such that C, the planet’s moment of inertia, is unity, that u(M+m) is unity, and that a
quantity called s and defined in (6). of this paper is unity.

From this it may be deduced that the unit length is such a distance that the moment of inertia of
planet and satellite when at this distance apart about their common centre of inertia is equal to the
moment of inertia of the planet about its own axis. If ¢ be this unit of length, this condition gives

The unit of time is the time taken by the satellite to describe an arc of 57°:3 in a circular orbit at

distance v; it is therefore { — 1‘3 ) (C -A!Mj#y The unit of mass is Mﬂﬁ-mm

From this it follows that the unit of moment of momentum is the moment of momentum of orbital
motion when the satellite moves in a circular orbit at distance . The critical moment of momentum of
the system, referred to in those two papers and below in this appendix, is 4/3f of this unit of moment of
momentum,

5 X 2
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In whatever manner the two bodies may interact on one another, the resultant
moment of momentum 4 must remain constant, and therefore («) will always give one
relation between n, #, and 7; a second relation would be given by a knowledge of the
nature of the interaction between the two bodies.

The equation («) might be illustrated by taking n, @, n as the three rectangular
co-ordinates of a point, and the resulting surface might be called the surface of
momentum, in analogy with the ““line of momentum” in the above paper.

This surface is obviously a hyperboloid, which cuts the plane of nx in the straight
line n4-x="; the planes of 7y and p=1 in the straight line determined by n=nh; and
the plane of xn in-the rectangular hyperbola x(1—»)=h.

The contour lines of this surface for various values of n are a family of rectangular
hyperbolas with common asymptotes, viz.: n=1 and a=0. It does not however
seem worth while to give a figure of them.

If the satellite raises frictional tides of any kind in the planet, the system is non-
conservative of energy, and therefore in equation (8) # and n must so vary that z
may always diminish.

Suppose that equation (8) be represented by a surface the points on which have
co-ordinates x, 9, z, and suppose that the axis of z be vertical. Then each point on
the surface represents by the co-ordinates x and 7 one configuration of the system,
with given moment of momentum 4. Then since the energy must diminish, it follows
that the point which represents the configuration of the system must always move
down hill. To determine the exact path pursued by the point it would be necessary
to take into consideration the nature of the frictional tides which are being raised by
the satellite.

I will now consider the nature of the surface of energy.

Tt is clear that it is only necessary to consider positive values of % lying between
zero and unity, because values of 5 greater than unity correspond to a hyperbolic
orbit; and the more interesting part of the surface is that for which » is a pretty
small fraction.

The curves, formed on the surface by the intersection of vertical planes parallel to =,
have maxima and minima points determined by dz/dx=0.

This condition gives by differentiation of ()

1—17%3._'_6-—:—?—7—)2:0 o . | o . . . e e (7/)

From the considerations adduced in previous papers, namely, those in the Proc. Roy.
Soc., No. 197, 1879, and No. 202, 1880, it follows that this equation has either two
real roots or no real roots.

When 7=0 the equation has real roots provided % be greater than 4/3% and since
this case corresponds to that of all but one of the satellites of the solar system, I shall
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henceforth suppose that / is greater than 4/3% It will be seen presently that in this
case every section parallel to # has a maximum and minimum point, and the nature
of the sections is exhibited in the curves of energy in the two previous papers.

Now consider the condition n=4, which expresses that the planet rotates in the
same period as that in which the satellite revolves, so that if the orbit be circular the
two bodies revolve like a single rigid body.

With the present units 2=1/x5, and by («), n=h—a(1—7).

Hence the condition n=4 leads to the biquadratic

1 1
b — 3 —=0. . . . . . . . . . (8
m l—nm +1—17 ©)

If y be zero this equation is identical with (y), which gives the maxima and minima
of energy.

Hence if the orbit be circular the maximum and minimum of energy correspond to
two cases in which the system moves as a rigid body. If however the orbit be
elliptical, and if n=4, there is still relative motion during revolution of the satellite,
and the energy must be capable of degradation. The principal object of the present
note is to investigate the stability of the circular orbit in these cases, and this question
involves a determination of the nature of the degradation when the orbit is elliptical.

In Part V. of the present paper it has been shown that if the planet be a fluid of small
viscosity the ellipticity of the satellite’s orbit will increase if 18 rotations of the planet
be less than 11 revolutions of the satellite, and vice versd. Hence the critical relation
between n and £2 is n=31%0. This leads to the biquadratic

h 18 1 ;
b3 —
@ ac+’ 11 ’7—0 N 3

This is an equation with two real roots, and when it is illustrated graphically it will
lead to a pair of curves. For configurations of the system represented by points lying
between these curves the eccentricity increases, and outside it diminishes,—-supposing
the viscosity of the planet and the eccentricity of the satellite’s orbit to be small.

In order to illustrate the surface of energy (B) and the three biquadratics (y), (9),
and (e), I chose A=3, which is greater than 4/3%

By means of a series of solutions, for several values of %, of the equations (y), (3), (e),
and a method of graphical interpolation, I have drawn the accompanying figure.

The horizontal axis is that of w, the square root of the satellite’s distance, and the
numbers written along it are the various values of z. The vertical axis is that of 7,
and it comprises values of % between 0 and 1. The axis of z is perpendicular to the
plane of the paper, but the contour lines for various values of z are projected on to the
plane of the paper.
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The numbers written on the curves represent the values of z, viz., 2=0, 1, 2,
3, 4, 5.

The ends of the contour lines on the right are joined by dotted lines, because it
would be impossible to draw the curves completely without a very large extension of
the figure.

The broken lines (———) marked ¢ line of maxima,” terminating at A, and “line of
minima,” terminating at B, represent the two roots of the biquadratic (y).

The lines marked n=4a represent the two roots of (8), but computation showed that
the right-hand branch fell so very near the line of minima, that it was necessary to
somewhat exaggerate the divergence in order to show it on the figure.

Contour lines of surface of energy.

The chain-dot lines (- . —. — ) C, C, marked n=1%0, represent the two roots of (e).
For configurations of the system represented by points lying between these two curves,
the ellipticity of orbit will increase; for the regions outside it will decrease. This
statement only applies to cases of small ellipticity, and small viscosity of the planet.

Inspection of the figure shows that the line of minima is an infinitely long valley of
a hyperbolic sort of shape, with gently sloping hills on each side, and the bed of the
valley gently slopes up as we travel away from B.

The line of maxima is a ridge running up from A with an infinitely deep ravine on

the left, and the gentle slopes of the valley of minima on the right.
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Thus the point B is a true minimum on the surface, whilst the point A is a
maximum-minimum, being situated on a saddle-shaped part of the surface.

The lines n=4a start from A and B, but one deviates from the ridge of maxima
towards the ravine ; and the other branch deviates from the valley of minima by going
up the slope on the side remote from the origin.

This surface enables us to perfectly determine the stabilities of the circular orbit,
when planet and satellite are moving as parts of a rigid body.

The configuration B is obviously dynamically stable in all respects; for any con-
figuration represented by a point near B must degrade down to B.

It is also clear that the configuration A is dynamically unstable, but the nature of
the instability is complex. A displacement on the right-hand side of the ridge of
maxima will cause the satellite to recede from the planet, because & must increase
when the point slides down hill.

If the viscosity be small, the ellipticity given to the orbit will diminish, because A
is not comprised between the two chain-dot curves. Thus for this class of tide the
curcularity is stable, whilst the configuration is unstable.

A displacement on the left-hand side of the ridge of maxima will cause the satellite
to fall into the planet, because the point will slide down into the ravine. But the
circularity of the orbit is again stable.

This figure at once shows that if planet and satellite be revolving with maximum
energy as parts of a rigid body, and if, without altering the total moment of
momentum, or the equality of the two periods, we impart infinitesimal ellipticity to
the orbit, the satellite will fall into the planet. This follows from the fact that the
line n=412 runs on to the slope of the ravine.

If on the other hand without affecting the moment of momentum, or the circularity,
we infinitesimally disturb the relation n=412, then the satellite will either recede or
approach the planet according to the nature of the disturbance.

These two statements are independent of the nature of the frictional interaction of
the two bodies.

The only parts of this figure which postulate anything about the nature of the inter-

action are the curves n=1%0.

I have not thought it worth while to illustrate the case where /4 is less than 4/8%,

or the negative side of the surface of energy; but both illustrations may easily be
carried out.



